Revista de Geografía Agrícola
Hybridization between teosinte and maize in the Ciénega, Jal., México: a narrative proposal on the evolutionary process
ISSNe: 2448-7368   |   ISSN: 0186-4394
PDF

Keywords

Zea mays ssp.
mays
teosinte
mexicana
parviglumis
wild.

How to Cite

Inzunza Mascareño, F. R. (2013). Hybridization between teosinte and maize in the Ciénega, Jal., México: a narrative proposal on the evolutionary process. Revista De Geografía Agrícola, (50-51), 71–87. https://doi.org/10.5154/r.rga.2013.50-51.06

Abstract

Natural hybridization between teosinte and maize in commercial fields in the Ciénega de Jalisco, México, is a recent and growing problem. There is a wide range of intermediate morphological variants between teosinte and maize. The basic premise of this work, is that all different kinds of morphological forms achieved by crossbreeding in Poncitlán Jal., belong to the same subspecies; possibly Zea mays ssp mexicana. Another fundamental premise is that these morphological variations represent different steps of the evolutionary process between teosinte and maize. In this article, I seek the principle of continuity that illustrates how the shape of the teosinte and maize changed, and what forces acted upon the plants to produce this new shape.The drastic change in the shape of the orthogonal projection from circular (teosinte) to elliptical (maize) is defined as anamorphosis. Since the amount of surface under the effect of gravity can modify gravimorphogenesis, anamorphosis is vital to our understanding of the evolutionary process. The effect of gravity can reduce the number of branches and lead to the fusion of several pre-corncobs into a macro-corncob. This macro-corncob is product of the combination of opposite forces: gravity, and plant hormones in the meristem. I also suggest the possibility that anamorphosis is caused by the oxidative stress produced by hydrogen sulfide present in lacustrine plains and alluvial fans.

https://doi.org/10.5154/r.rga.2013.50-51.06
PDF

References

Abiko, T.; L. Kotula; K. Shiono; M.A. Malik; T. D. Colmer, y M. Nakazono. 2012. «Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaragüensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays)». Plant Cell and Environment 35(9).

Baltazar B. M.; G. J. Sánchez; L. de la Cruz and J. B. Schoper. 2005.« Pollination between maize and teosinte: an important determinant of gene flow in Mexico». Theoretical and Applied Genetics 110(3):519-526.

Brownlee Ch. 2004. «Biography of John F. Doebley». Proc. Natl. Acad. Sci. USA: No. 20, 697-699.

Doebley, J. 2001. «George Beadle’s Other Hypothesis: One-Gene, One-Trait». Genetics, Vol. 158 no. 2 487-493.

Doebley, J. 2004. «The genetics of maize evolution». Annual Review of Genetics 38.

Dooley F. D.; S. P.Nair; and P. D. Ward. 2013. «Increased Growth and Germination Success in Plants following Hydrogen Sulfide Administration». Plos One 8(4).

Fedoroff, N.V. 2012. «McClintock’s challenge in the 21st century» Proceedings of the National Academy of Sciences (pnas). Vol. 109, No 50. 4p.

Fernández B. J. 1977 «Variación morfológica de los maíces de la Sierra de Puebla y Centro Occidental de Veracruz: implicaciones ecológicas y socioeconómicas ». Tesis profesional, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, México. 98 p.

Hufford M. B.; M. E.Martínez; B. S.Gaut; L.E. Eguiarte, and M.I. Tenaillon. 2012. «Inferences from the Historical Distribution of Wild and Domesticated Maize Provide Ecological and Evolutionary Insight » Plos One 7(11):9.

Kato T. A.; S.C. Mapes; O. Mera; H. J. Serratos; and B. R. Bye. 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México. 116 p.

Loomis R. S.; D.J. Connor. 2002. Ecología de cultivos. Productividad y manejo en sistemas agrarios. Ediciones Mundi-Prensa. España. 591 p.

McClintock, B. 1941. «The stability of broken ends of chromosomes in Zea mays». Genetics (Genetics Soc. America) 26 (2): 234-282

McClintock, B. 1950. The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences, pnas. 36(6)344-355.

Moulia B.; C. Loup; M. Chartier; J.M. Allirand, and C. Edelin. 1999. «Dynamics of architectural development of maize (Zea mays L.), in a non-limiting environment: the branched potential of modern maize». Annals of Botany 84:645-656, usa.

Thompson, D’Arcy. 2011. «Sobre el crecimiento y la forma». Akal/Ciencia Edition. Madrid. 330 p.

Van Apeldoorn D.F.; B. Kempen; M.P. Sonneveld, and K. Kok. 2013. «Coevolution of landscape patterns and agricultural intensification: An example of dairy farming in a traditional Dutch landscape». Agriculture, Ecosystems & Environment. Vol 172, 16-23

Zhao Q.; A. Thuillet; N.K. Uhlmann; A.J. Weber; A.J. Clavijo; S.M. Allen; S. Tingey and J. Doebley. 2008. «The Role of Regulatory Genes During Maize Domestication: Evidence From Nucleotide Polymorphism and Gene Expression». Genetics. 178(4): 2133–2143.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Revista de Geografía Agrícola