##article.highlights##
- Sites where moss extraction occurs exhibit the highest moss biomass.
- Ecotourism sites show the highest water storage capacity among mosses.
- All sites were dominated by Thuidium delicatulum (Hedw.) Schimp. var. delicatulum.
- Moss-extraction sites experience limited coverage of herbaceous and shrub vegetation.
Abstract
Introduction: Mosses are pioneer organisms known for their high-water storage capacity and biomass. Consequently, they play a significant structural and functional role in terrestrial ecosystems.
Objective: The aim of the present study was to analyze whether there is variation in moss biomass and water storage capacity among moss species because of site use and management in a fir forest at Parque Nacional El Chico, Hidalgo, México
Materials and methods: A total of ten sites were selected, distributed across an altitudinal range of 2781 to 2981 m: three in the core zone of the park, three in the buffer zone (tourism without moss extraction), and four in the zone with moss extraction. Plots and subplots were established at each site to estimate the biomass and water storage capacity (WSC) of moss species. Furthermore, the coverage of the herbaceous and shrub strata at the sites was determined.
Results and discussion: Thuidium delicatulum (Hedw.) Schimp. var. delicatulum predominated in biomass across all sites. The highest moss biomass (0.140 g∙cm-2) was found in an extraction site (Esquillero), while the highest Water Storage Capacity (WSC) (0.254 g∙cm-2) was estimated in ecotourism-oriented sites (La Orozca). In sites with moss extraction, coverage of the herbaceous and shrub strata was minimal, and moss biomass increased.
Conclusions: Use (conservation, ecotourism) and management (extraction) of the forest affects the biomass and WSC values of mosses and the percentage of understory cover (herbaceous and shrubs).
References
Acatitla Pluma, O., Villamil Carrera, C., & Martínez-Pérez, J. L. (2020). La importancia comercial de los musgos. Madera y Bosques, 26(3), e2632031. https://doi.org/10.21829/myb.2020.2632031
Anastacio Martínez, N. D., Franco-Maass, S., Valtierra Pacheco, E., & Nava Bernal, G. (2017). El proceso de extracción y comercialización del musgo (Thuidium delicatulum) en el Estado de México. Ciencia Ergo Sum, 24(1), 44‒61. https://www.redalyc.org/articulo.oa?id=10449880005
Baudry, O., Charmetant, C., Collet, C., & Ponette, Q. (2014). Estimating light climate in forest with the convex densiometer: Operator effect, geometry and relation to diffuse light. European Journal of Forest Research, 133, 101–110. https://doi.org/10.1007/s10342-013-0746-6
Cárdenas, S. (1999). Los musgos pleurocárpicos del Valle de México. Tropical Bryology, 16, 109‒116. https://www.scielo.org.mx/scielo.php?script=sci_nlinks&ref=6831567&pid=S1870-3453201400010001200007&lng=es
Comisión Nacional de Áreas Naturales Protegidas (CONANP). (2005). Programa de conservación y manejo: Parque Nacional El Chico, México. https://www.conanp.gob.mx/que_hacemos/pdf/programas_manejo/PN_Chico.pdf
Delgadillo-Moya, C. (2014). Biodiversidad de Bryophyta (musgos) en México. Revista Mexicana de Biodiversidad, 85, 100‒105. https://doi.org/10.7550/rmb.30953
Delgadillo, C., Villaseñor, J. L., Cárdenas, Á., & Ortiz, E. (2014). Diversidad y distribución de musgos en el estado de Hidalgo, México. Revista Mexicana de Biodiversidad, 85(1), 84‒97. https://doi.org/10.7550/rmb.35761
Fehmi, J. S. (2010). Confusion among three common plant cover definitions may result in data unsuited for comparison. Journal of Vegetation Science, 21(2), 273‒279. https://doi.org/10.1111/j.1654-1103.2009.01141.x
Fojcik, B., Wierzgoń, M., & Chmura D. (2019). Response of bryophytes to disturbances in managed forests. A case study from a Polish forest. Cryptogamie, Bryologie, 40(10), 105‒118. https://doi.org/10.5252/cryptogamie-bryologie2019v40a10
Gabriel, R., Coelho, M. M., Henriques, D. S., Borges, P. A., Elias, R. B., Kluge, J., & Ah-Peng, C. (2014). Long-term monitoring across elevational gradients to assess ecological hypothesis: a description of standardized sampling methods in oceanic islands and first results. Arquipelago -‐- Life and Marine Sciences, 31, 45‒67. https://islandlab.uac.pt/fotos/projectos/1440666688.pdf
Goffinet, B., Buck, W., & Shaw, A. (2008). Morphology, anatomy, and classification of the Bryophyta. In B. Shaw, & A. Goffinet (Eds.), Bryophyte biology. Cambridge University Press.
Gradstein, R. S., Churchill, S. P., & Salazar-Allen, N. (2001). Guide to the bryophytes of Tropical America (vol. 86). New York Botanical Garden.
Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological Statics software package for education and data analysis. Paleontología Electronica, 4(1), 9. https://palaeo-electronica.org/2001_1/past/past.pdf
Hernández-Álvarez, A. G., Reyes-Ortiz, J. L., Villanueva-Díaz, J., & Sánchez-González, A. (2021). Variación en la estructura del bosque de Abies religiosa (Pinaceae), en diferentes condiciones de manejo y disturbio. Acta Botanica Mexicana, 128, e1752. https://doi.org/10.21829/abm128.2021.1752
Hernández-Rodríguez, E., & Delgadillo-Moya, C. (2021). The ethnobotany of bryophytes in Mexico. Botanical Sciences, 99(11), 13‒27. https://doi.org/10.17129/botsci.2685
Hernández-Rodríguez, E., Escalera-Vázquez, L. H., García-Ávila, D., Montoro Girona, M., & Mendoza, E. (2021). Reduced-impact logging maintain high moss diversity in temperate forests. Forests, 12(4), 383. https://doi.org/10.3390/f12040383
Herrera-Paniagua, P., Martínez, M., & Delgadillo-Moya, C. (2018). Patrones de riqueza y de asociación al hábitat y microhábitat de los musgos del Área Natural Protegida Sierra de Lobos, Guanajuato, México. Revista Mexicana de Biodiversidad, 89(4), 1002‒1011. https://doi.org/10.22201/ib.20078706e.2018.4.2455
Lemmon, P. E. (1956). A spherical densiometer for estimating forest overstory density. Forest Science, 2(4), 314–320. https://doi.org/10.1093/forestscience/2.4.314
Matamoros, P. R. A., & Ceballos, M. A. (2017). Errores conceptuales de estadística más comunes en publicaciones científicas. Revista CES Medicina Veterinaria y Zootecnia, 12(3), 211‒229. http://doi.org/10.21615/cesmvz.12.3.4
Mejía Canales, A., Franco-Maass, S., Endara Agramont, A. R., & Ávila Akerberg, V. (2018). Caracterización del sotobosque en bosques densos de pino y oyamel en el Nevado de Toluca. Madera y Bosques, 24(3), e2431656. https://doi.org/10.21829/myb.2018.e2431656
Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology. John Wiley and Sons.
Oishi, Y. (2018). Evaluation of the water storage capacity of bryophytes along an altitudinal gradient from temperate forests to the alpine zone. Forests, 9(7), 433. https://doi.org/10.3390/f9070433
Razo-Zárate, R., Gordillo-Martínez, A., Rodríguez-Laguna, R., Maycotte-Morales, C., & Acevedo-Sandoval, O. (2013). Escenarios de carbono para el bosque de oyamel del Parque Nacional El Chico, Hidalgo, México. Revista Latinoamericana de Recursos Naturales, 9(1). https://revista.itson.edu.mx/index.php/rlrn/article/view/207
Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación. https://dof.gob.mx/nota_detalle_popup.php?codigo=5173091
Sharp, A. J., Crum, H., & Eckel, P. M. (1944). The moss flora of Mexico (vol. 69). New York Botanical Garden.
Siwach, A., Kaushal, S., & Baishya, R. (2021). Effect of mosses on physical and chemical properties of soil in temperate forests of Garhwal Himalayas. Journal of Tropical Ecology, 37(3), 126‒135. https://doi.org/10.1017/S0266467421000249
Stefanska-Krzaczek, E., Swacha, G., Zarnowiec, J., Raduła, M., Kącki, Z., & Staniaszek-Kik, M. (2022). Central European forest floor bryophytes: Richness, species composition. Ecological Indicators, 139, 1‒12. https://doi.org/10.1016/j.ecolind.2022.108954
Toro Manriquez, M., Ardiles, V., Promis, Á., Huertas Herrera, A., Soler, R., Lencinas, M., & Martínez Pastur, G. (2020). Forest canopy-cover composition and landscape influence on bryophyte communities in Nothofagus forests of southern Patagonia. PLoS ONE, 15(11), e0232922. https://doi.org/10.1371/journal.pone.0232922
Vanderpoorten, A., & Goffinet, B. (2009). Sampling of bryophytes. In A. Vanderpoorten, & B. Goffinet (Eds.), Introduction to bryophyte biology (2nd ed., pp. 33‒45). Cambridge University Press.
WFO (2023). WFO Plant List. Snapshots of the taxonomy. https://wfoplantlist.org/
Zepeda-Gómez, C., Ávila-Pérez, P., Díaz-García, U. S., Alanís-Martínez, Y., Zarazúa-Ortega, G., & Amaya-Chávez, A. (2014). Diversidad de musgos epifitos de la zona metropolitana del valle de Toluca, México. Revista Mexicana de Biodiversidad, 85(1), 108‒124. https://doi.org/10.7550/rmb.35456
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente