##article.highlights##
- Four pruning intensities were evaluated in a seven-year-old Pinus patula plantation.
- Increases in height, diameter and volume were measured one year after pruning.
- Pruning the lower third of the crown generated the greatest increase in growth.
- The number of epicormic shoots was greater when the lower two thirds of the crown were pruned.
Abstract
Introduction: The silvicultural objective of pruning is the production of knot-free wood; however, pruning can affect the growth of early-aged trees.
Objective: The aim of this study was to evaluate the effect of four pruning intensities in a sevenyear-old plantation of Pinus patula Schiede ex Schltdl. & Cham.
Materials and methods: A randomized experimental design with 12 plots (four treatments and three replications) was used; a total of 48 trees were sampled. Pruning treatments were: 1) no pruning, 2) pruning of the lower third of the crown, 3) pruning of the lower half of the crown and 4) pruning of the lower two thirds of the crown. Growth and number of epicormic shoots were measured one year after pruning.
Results and discussion: The ANOVA showed a significant effect (P < 0.05) of pruning intensity on the variables evaluated. Pruning the lower third of the crown was the treatment with the least amount of epicormic shoots and the greatest increment in height, diameter and volume, while the most intense pruning (lower two thirds of the crown) had the opposite effect.
Conclusion: More intense pruning negatively affects the growth of P. patula trees in early stages of development.
References
Amateis, R. L., & Burkhart, H. E. (2011). Growth of young loblolly pine trees following pruning. Forest Ecology and Management, 262, 2338–2343. https://doi.org/10.1016/j.foreco.2011.08.029
Ashton, M. S., & Kelty, M. J. (2018). The practice of silviculture: Applied forest ecology. John Wiley and Sons. https://bibliotecadigital.infor.cl/handle/20.500.12220/1266
Baders, E., Donis, J., Snepsts, G., Adamovics, A., & Jansons, A. (2017). Pruning effect on Norway spruce (Picea abies (L.) Karst.) growth and quality. Forestry Studies, 66(1), 33–48. https://doi.org/10.1515/fsmu-2017-0005
Comisión Nacional Forestal (CONAFOR). (2016). Conservación de biodiversidad en el ejido Llano Grande. https://www.gob.mx/cms/uploads/attachment/file/159093/05_Llano_Grande__Puebla.pdf
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (1998). Climas, escala 1:1000000. http://www.conabio.gob.mx/informacion/gis/
Cown, D. J. (1972). Effects of severe thinning and pruning treatments on the intrinsic Wood properties of young radiata pine. New Zealand Journal of Forestry Science, 3, 379‒389. https://www.scionresearch.com/__data/assets/pdf_file/0018/30816/NZJFS331973COWN379-389.pdf
Daniel, T. W., Helms, J. A, & Baker, F. S. (1982). Principios de silvicultura. McGraw-Hill.
Davel, M. (2013). Poda en plantaciones de Pseudotsuga menziesii, en la Patagonia Andina, Argentina. Bosque, 34(2), 181‒189. https://doi.org/10.4067/S0717-92002013000200007
Desrochers, A., Maurin, V., & Tarroux, E. (2015). Production and role of epicormic shoots in pruned hybrid poplar: effects of clone, pruning season and intensity. Annals of Forest Science, 72, 425‒434. https://doi.org/10.1007/s13595-014-0443-8
Erkan, N., Uzun, E., Aydin, A. C., & Bas, M. N. (2016). Effect of pruning on diameter growth in Pinus brutia Ten. plantations in Turkey. Croatian Journal for Engineer 37(2), 367‒371. https://www.researchgate.net/publication/307018591_Effect_of_Pruning_on_Diameter_Growth_in_Pinus_brutia_Ten_Plantations_in_Turkey
Fassola, H. E., Moscovich, F. A., Ferrere, P., & Rodríguez, F. (2002). Evolución de las principales variables de árboles de Pinus taeda L. sometidos a diferentes tratamientos silviculturales en el nordeste de la provincia de Corrientes, Argentina. Ciência Florestal, 12(2), 51‒60. https://www.redalyc.org/pdf/534/53412206.pdf
Fernández, P., Basauri, J., Madariaga, C., Menéndez, M., Olea, R., & Zubizarreta, R. (2016). Effects of thinning and pruning on stem and crown characteristics of radiata pine (Pinus radiata D. Don). iForests, 10(2), 383‒390. https://doi.org/10.3832/ifor2037-009
Ferraz, A. C., Mola, B., González, J. R., & Soares, J. R. (2016). Pruning effect in Eucalyptus grandis x Eucalyptus urophylla clone growth. Scientia Forestal Piracicaba, 44(111), 729‒738. https://doi.org/10.18671/scifor.v44n111.19
Ferrere, P., Lupi, A. M., & Boca, T. (2015). Crecimiento del Pinus radiata sometido a diferentes tratamientos de raleo y poda en el sudeste de la provincia de Buenos Aires, Argentina. Bosque, 36(3), 423‒434. https://doi.org/10.4067/S0717-92002015000300009
Hevia, A., Álvarez-González, J. G. & Majada, J. (2016). Comparison of pruning effects on tree growth, productivity and dominance of two major timber conifer species. Forest Ecology and Management, 374(15), 82‒92. https://doi.org/10.1016/j.foreco.2016.05.001
Irschick, P., Figueredo, S., Weber, E., Mac-Donagh, P., & Costas, R. (2005). Influencia de la densidad y podas sobre la producción de Pinus taeda L. a los 7 años de edad. Ciência Florestal, 15(3), 275‒284. https://www.redalyc.org/articulo.oa?id=53415307
Instituto Nacional de Estadística y Geografía (INEGI) (2001). Conjunto nacional de datos vectoriales de hipsometría, escala 1:4000000- http://adesur.centrogeo.org.mx/layers/geonode%3Aaltimetria
Instituto Nacional de Estadística y Geografía (INEGI). (2014). Conjunto de datos vectoriales edafológico, escala 1:250000 serie II. http://www.conabio.gob.mx/informacion/metadata/gis/eda250s2gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
Instituto Nacional de Estadística y Geografía (INEGI). (2018). Base de datos vectoriales de uso del suelo y tipos de vegetación, escala 1:250000. https://www.elementospolipub.org/ojs/index.php/epp/article/view/23
Masatoshi, E., & Velez-Mesa, G. (1992). Results of a pruning trial with Pinus patula in Colombia. Piracicaba, 2, 45‒49. https://www.ipef.br/publicacoes/international/nr02cap07.pdf
Neilsen, W. A., & Pinkard, E. A. (2003). Effects of green pruning on growth of Pinus radiata. Canadian Journal Forest Restauration, 33(11), 2067–2073. https://doi.org/10.1139/x03-131
Nyland, R. D., Kenefic, L. S., Bohn, K. K., & Stout, S. L. (2016). Silviculture: Concepts and applications (3rd. ed.). Ed. Waveland Press, Inc.
Schneider, P. R., Finger, C. A. G., & Hoppe, J. M. (1999). Efeito da intensidade de desrama na produção de Pinus elliottii Engelm., implantado em solo pobre, no estado do Rio Grande do Sul. Ciência Florestal, 9(1), 35‒46. https://doi.org/10.5902/19805098364
Smith, D. M., Larson, B. C., Kelty, M. J., & Ashton, P. M. S. (1997). The practice of
silviculture: Applied forest ecology (9th ed.). John Wiley & Sons, Inc.
Soto-Gil, A. L., Velázquez-Martínez, A., Pérez-Moreno, J., Fierros-González, A. M., & Martínez-Reyes, M. (2022). Ectomycorrizal morphotypes in structural variable retention of Pinus patula Schlltdl et Cham. Madera y Bosques, 28(2), e2822388. https://doi.org/10.21829/myb.2022.2822388
Tonguc, F., Guner, S. (2017). Effects of pruning on diameter and height growth of Pinus nigra Arnold subsp. pallasina plantations in Turkey. International Journal of Environment, Agriculture and Biotechnology, 2(1), 3‒4. https://doi.org/10.22161/ijeab/2.1.32
Wang, Ch., Tang, Ch., Hein, S., Guo, J., Zhao, Z., & Zeng, J. (2019). Branch development of five-year-old Betula alnoides plantations in response to planting density. Forests, 9(1), 42. https://doi.org/10.3390/f9010042
York, R. A. (2019). Long-term taper and growth reductions following pruning intensity treatments in giant sequoia (Sequoiadendron giganteum). Canadian Journal Forest Restauration, 49, 10. https://doi.org/10.1139/cjfr-2019-0118
Zhao, X., Mang, S., Quan, W., & Ding, G. (2023). Growth response of trees with different growth statuses to pruning on a Pinus massoniana Lamb. plantation. Forests, 14(4), 668. https://doi.org/10.3390/f14040668
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente