Revista Chapingo Serie Ciencias Forestales y del Ambiente
Productivity of manual loading system of logs in El Salto, Durango, México
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

log diameter
loading distance
loading cycle
productivity
logs

How to Cite

Nájera-Luna, J. A., Méndez-González, J., Corral-Rivas, S., & Hernández, F. J. (2023). Productivity of manual loading system of logs in El Salto, Durango, México. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(2), 119–131. https://doi.org/10.5154/r.rchscfa.2022.06.042

##article.highlights##

  • Diameter of logs and distance to the truck affect productivity of manual loading system
  • 10 to 30 cm diameter and 30 to 60 kg logs take 12 s to carry them.
  • Logs smaller than 30 cm in diameter at distances greater than 10 m need 15 s to carry them.
  • Pieces larger than 30 cm and 60 kg, more than 10 m from the truck require double manual loading time.
  • The efficiency of this system can be increased by setting maximum loading distances of 10 m.

Abstract

Introduction: In some forest regions of Mexico, it is common for short-sized logs to be handloaded; however, the efficiency of this operation has been poorly documented.
Objective: To evaluate the effect of log size and distances on manual loading productivity in forests in the region of El Salto, Durango, Mexico.
Materials and methos: A total of 738 manual loading cycles of 4 ft (1.22 m) logs were timed using the ‘back-to-zero’ method. Log volume and loading distances were taken by direct in-situ measurement. Average log diameters were divided into three categories and loading distances into four. The system yield was determined by relating log volume to total loading time.
Results and discussion: Manual loading yield was established from 3.80 to 16.42 m3∙h-1, influenced by log diameter and loading distances, because 82 % of the loaded volume corresponds to logs with diameters from 10 to 30 cm, which are loaded every 12 s; logs larger than 30 cm require 27 s. Also, 91 % of the loading volume is carried out in the first 10 m of distance from the truck and takes 15 s per log, and, at longer distances, 35 s.
Conclusions: It is possible to increase the performance of the operation by considering maximum loading distances in the order of 10 m

https://doi.org/10.5154/r.rchscfa.2022.06.042
PDF

References

Barbosa, R. P., Fiedler, N. C., Carmo, F. C. D. A. D., Minette, L. J., & Silva, E. N. (2014). Análise de posturas na colheita florestal semimecanizada em áreas declivosas. Revista Árvore, 38(4), 733‒738. https://doi.org/10.1590/S0100-67622014000400016

Cataldo, M. F., Proto, A. R., Macrì, G., & Zimbalatti, G. (2020). Evaluation of different wood harvesting systems in typical Mediterranean small-scale forests: a Southern Italian case study. Annals of Silvicultural Research, 45(1), 1‒11. https://doi.org/10.12899/asr-1883

Cavassin-Diniz, C. C., Lima-Cerqueira, C., & Martins-de Oliveira, F. (2018). Influência do sortimento de toras na produtividade de um carregador florestal. Agropecuária Científica no Semiárido, 14(3), 247‒253. https://doi.org/10.30969/acsa.v14i3.1050

Cruz de León, G., & Uranga-Valencia, L. P. (2013). Theoretical evaluation of Huber and Smalian methods applied to tree stem classical geometries. Bosque, 34(3), 311‒317. https://doi.org/10.4067/S0717-92002013000300007

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., & Robledo, C. W. (2018). InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. http://www.infostat.com.ar

do Nascimento-Santos, D. W. F., Fernandes, H. C., Valente, D. S. M., Gomes, B. M., Dadalto, J. P., & da Silva Leite, E. (2018). Desempenho técnico e econômico de distintos modelos de forwarders. Nativa, 6(3), 305‒308. https://doi.org/10.31413/nativa.v6i3.5070

Duncker, P. S., Barreiro, S. M., Hengeveld, G. M., Lind, T., Mason, W. L., Ambrozy, S., & Spiecker, H. (2012). Classification of forest management approaches: a new conceptual framework and its applicability to European forestry. Ecology and Society, 17(4), 51. https://doi.org/10.5751/ES-05262-170451

Eker, M. (2011). Assessment of procurement systems for unutilized logging residues for Brutian pine forest of Turkey. African Journal of Biotechnology, 10(13), 2455‒2468. doi: 10.5897/AJB10.2059

FAO, ITTO & United Nations. (2020). Forest product conversion factors. Food and Agriculture Organization of the United Nations-International Tropical Timber Organization-United Nations Economic Commission for Europe. https://doi.org/10.4060/ca7952en

Fiedler, N. C., Alexandre Filho, P. C. R. T., Gonçalves, S. B., de Assis do Carmo, F. C., & Lachini, E. (2015). Análise biomecânica da carga e descarga manual de madeira de eucalipto. Nativa, 3(3), 179‒184. https://doi.org/10.14583/2318-7670.v03n03a05

Figueredo-Fernández, J. L., Barrero-Medel, H., & Vidal-Corona, A. M. (2020). Caracterización de elementos del aprovechamiento maderero de Pinus maestrensis Bisse en "El Franco", Guisa. Revista Cubana de Ciencias Forestales, 8(2), 204‒21. http://scielo.sld.cu/pdf/cfp/v8n2/2310-3469-cfp-8-02-204.pdf

Grzywiński, W., Turowski, R., Naskrent, B., Jelonek, T., & Tomczak, A. (2020). The impact of season on productivity and time consumption in timber harvesting from young alder stands in lowland poland. Forests, 11(10), 1081. https://doi.org/10.3390/f11101081

Gülci, N., & Erdaş, O. (2018). Comparison of timber loading productivity between manual system and electric powered winch system. European Journal of Forest Engineering, 4(1), 1‒6. https://web.archive.org/web/20190427105600id_/https://dergipark.org.tr/download/article-file/486855

Kaakkurivaara, N., & Kaakkurivaara, T. (2018). Productivity and cost analysis of three timber extraction methods on steep terrain in Thailand. Croatian Journal of Forest Engineering, 39(2), 213‒221. https://hrcak.srce.hr/file/300553

Labelle, E. R., & Lemmer, K. J. (2019). Selected environmental impacts of forest harvesting operations with varying degree of mechanization. Croatian Journal of Forest Engineering, 40(2), 239‒257. https://doi.org/10.5552/crojfe.2019.537

Maesano, M., Picchio, R., Monaco, A. L., Neri, F., Lasserre, B., & Marchetti, M. (2013). Productivity and energy consumption in logging operation in a Cameroonian tropical forest. Ecological Engineering, 57, 149‒153. https://doi.org/10.1016/j.ecoleng.2013.04.013

Melemez, K., Di Gironimo, G., Esposito, G., & Lanzotti, A. (2013). Concept design in virtual reality of a forestry trailer using a QFD-TRIZ based approach. Turkish Journal of Agriculture and Forestry, 37(6), 789‒801. https://doi.org/10.3906/tar-1302-29

Melemez, K., Tunay, M., & Emir, T. (2014). A comparison of productivity in five small-scale harvesting systems. Small-scale Forestry, 13(1), 35‒45. https://doi.org/10.1007/s11842-013-9239-1

Mihelič, M., Spinelli, R., & Poje, A. (2018). Production of wood chips from logging residue under space-constrained conditions. Croatian Journal of Forest Engineering, 39(2), 223‒232. https://hrcak.srce.hr/file/300554

Minette, L. J., Schettino, S., Souza, A. P., Soranso, D. R., & Barbosa, V. A. (2018). Colheita de madeira danificada pelo vento: carga física de trabalho e risco de LER/DORT aos trabalhadores. Nativa, 6(1), 66‒72. https://doi.org/10.31413/nativa.v6i1.4312

Nájera-Luna, J. A., Aguirre-Calderón, O. A., Treviño-Garza, E. J., Jiménez-Pérez, J., Jurado-Ybarra, E., Corral-Rivas, J. J., & Vargas-Larreta, B. (2012). Impactos de las operaciones forestales de derribo y arrastre en El Salto Durango. Revista Mexicana de Ciencias Forestales, 3(10), 51‒64. https://doi.org/10.29298/rmcf.v3i10.524

Peralta, J. L., Jiménez, E. A., & Pérez, M. A. R. (2014). Estudio del trabajo: una nueva visión. Grupo Editorial Patria.

PRO FLORESTA S. C. (2008). Estudio regional forestal UMAFOR 1008 “Pueblo Nuevo” Estado de Durango. http://www.conafor.gob.mx:8080/documentos/docs/9/1134ERF_UMAFOR1008.pdf

Quintana, A. R., González, D. R., & Miranda, D. G. (2022). Efectos y medidas preventivas en las actividades de aprovechamiento forestal en la provincia Granma (Original). REDEL. Revista Granmense de Desarrollo Local, 6(1), 83‒95. https://revistas.udg.co.cu/index.php/redel/article/download/2921/6028/

Schettino, S., Minette, L. J., Bermudes, W. L., Caçador, S. S., & Souza, A. P. (2017). Ergonomic study of timber manual loading in forestry fomentation areas. Nativa, 5(2), 145‒150. https://doi.org/10.5935/2318-7670.v05n02a11

Silayo, D. S. A., Kiparu, S. S., Mauya, E. W., & Shemwetta, D. T. (2010). Working conditions and productivity under private and public logging companies in Tanzania. Croatian Journal of Forest Engineering, 31(1), 65‒74. https://hrcak.srce.hr/file/86349

Simões, D., Fenner, P. T., & Esperancini, M. S. T. (2014). Produtividade e custos do feller-buncher e processador florestal em povoamento de eucalipto de primeiro corte. Ciência Florestal, 24(3), 621‒631. https://periodicos.ufsm.br/cienciaflorestal/article/view/2990/pdf

Spinelli, R., Magagnotti, N., & Schweier, J. (2017). Trends and perspectives in coppice harvesting. Croatian Journal of Forest Engineering, 38(2), 219‒230. https://hrcak.srce.hr/pretraga?q=Trends+and+perspectives+in+coppice+harvesting

Stańczykiewicz, A., Kulak, D., Leszczyński, K., Szewczyk, G., & Kozicki, P. (2021). Effectiveness and injury risk during timber forwarding with a quad bike in early thinning. Forests, 12(12), 1626. https://doi.org/10.3390/f12121626

Secretaría del Trabajo y Previsión Social (STyPS). (2009). Extracción y transporte de trozas. Prácticas seguras en el sector forestal. https://www.stps.gob.mx/bp/secciones/dgsst/publicaciones/prac_seg/prac_chap/PS%20Trozas.pdf

Takimoto, Y., & Yovi, E. Y. (2003). Workload and work efficiency of manual log transportation in Java: Factors influencing transporting. Journal of the Japan Forest Engineering Society, 18(2), 75‒84. https://www.jstage.jst.go.jp/article/jjfes/18/2/18_KJ00007485071/_pdf.

Vanbeveren, S. P. P., Schweier, J., Berhongaray, G., & Ceulemans, R. (2015). Operational short rotation woody crop plantations: Manual or mechanised harvesting? Biomass and Bioenergy, 72, 8‒18. https://doi.org/10.1016/j.biombioe.2014.11.019

Waters, T. R., Putz-Anderson, V., & Garg, A. (2021). Applications manual for the revised NIOSH lifting equation. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, (DHHS-NIOSH). https://doi.org/10.26616/NIOSHPUB94110revised092021

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente