Revista Chapingo Serie Ciencias Forestales y del Ambiente
Forest species in the recovery of soils contaminated with copper due to mining activities
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Phytoremediation
phytostabilization
phytotoxicity
mine tailings
land degradation
soil management

How to Cite

Pizarro-Tapia, R. ., Flores, J. P. ., Tapia, J. ., Valdés-Pineda, R., González, D. ., Morales-Calderón, C. ., … León, L. . (2015). Forest species in the recovery of soils contaminated with copper due to mining activities. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(1), 29–43. https://doi.org/10.5154/r.rchscfa.2014.06.026

Abstract

Mining is the most important economic activity in Chile; causing significant degradation of the environment in the arid regions. The Coquimbo Region has suffered serious soil and water pollution because of heavy metals from mining, particularly copper. Implementation of measures that help to minimize the environmental impact of mining tailings requires knowledge about the adaptability of vegetative species to degraded soil conditions. Our objective was to determine and compare the phytostabilization abilities of native and exotic shrub species in areas extremely damaged by mining activities in the Coquimbo Region. The survival rates, growth levels, and canopy development of 20 species were evaluated by two experiments. The Cu quantity in stems and leaves and at three soil depths was measured. Our results indicated that Acacia saligna is the best species in accumulating heavy metals (average of 34.8 ppm in leaves and 12.3 ppm in stems, both for non-fertilized soils), while demonstrating average survival rates over 80 %. This study concludes that A. saligna is the best species for phytostabilization activities in mine tailings of the Coquimbo Region.

https://doi.org/10.5154/r.rchscfa.2014.06.026
PDF
ePUB

References

Azadpour, A., & Matthews, J. (1996). Remediation of metal-contaminated sites using plants. Remediation Journal, 6(3), 1–18. doi: https://doi.org/10.1002/rem.3440060302

Badilla-Ohlbaum, R., Ginocchio, R., Rodríguez, P. H., Céspedes, A., González, S., Allen, H. E., & Lagos, G. E. (2001). Relationship between soil copper content and copper content of selected crop plants in central Chile. Environmental Toxicology and Chemistry, 20, 2749– 2757. doi: https://doi.org/10.1002/etc.5620201214

Bersier, P., Howell, J., & Bruntlet, G. (1994). Advanced electrochemical techniques versus atomic absorption spectrometry: inductively coupled plasma atomic emission mass spectrometry in environmental analysis. Analyst, 119, 219–231. doi: https://doi.org/10.1039/AN9941900219

Buccolieri, A., Buccolieri, G., Dell’Atti, A., Strisciullo, G., & Gagliano-Candela, R. (2010). Monitoring of total and bioavailable heavy metals concentration in agricultural soils. Environmental monitoring and assessment, 168(1-4), 547–560. doi: https://doi.org/10.1007/s10661-009-1133-0

Canning-Clode, J., Fofonoff, P., Riedel, G. F., Torchin, M., & Ruiz, G. M. (2011). The effects of copper pollution on fouling assemblage diversity: A tropical-temperate comparison. PloS ONE, 6(3), e18026. doi: https://doi.org/10.1371/journal.pone.0018026

Coates, W. (2005). Tree species selection for a mine tailings bioremediation project in Peru. Biomass and Bioenergy, 28(4), 418–423. doi: https://doi.org/10.1016/j.biombioe.2004.11.002

Das, M., & Maiti, S. K. (2007). Metal accumulation in 5 native plants growing on abandoned CU-tailings ponds. Applied Ecology and Environmental Research, 5(1), 27–35. http://aloki.hu/pdf/0501_027035.pdf

De Gregori, I., Fuentes, E., Rojas, M., Pinochet, H., & Potin- Gautier, M. (2003). Monitoring of copper, arsenic and antimony levels in agricultural soils i m p a c t e d and non-impacted by mining activities, from three regions in Chile. Journal of Environmental Monitoring, 5(2), 287–295.

Environmental Protection Agency (EPA). (2000). Introduction to phytoremediation. Cincinnati, Ohio, USA: National Risk Management Research Laboratory, Office of Research Development, US Environmental Protection Agency.

Falvey, M., & Garreaud, R. (2007). Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. Journal of Hydrometeorology, 8, 171–193. doi: https://doi.org/10.1175/JHM562.1

Favier, V., Falvey, M., Rabatel, A., Pradeiro, E., & López, D. (2009). Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte-Chico region (26–32S). Water Resources Research, 45(W02424). doi: https://doi.org/10.1029/2008WR006802

Food and Agriculture Organization (FAO). (1998). Soil and terrain database for Latin America and the Caribbean. Rome, Italy: Author.

Ginocchio, R., & Baker, A., J. M. (2004). Metallophytes in Latin America: A remarkable biological and genetic resource scarcely known and studied in the region. Revista Chilena de Historia Natural, 77(1), 185–194. doi: https://doi.org/10.4067/S0716-078X2004000100014

Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, E., & Sepúlveda, N. (2004).Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in central Chile. Environmental Pollution, 127,343–352. doi: https://doi.org/10.1016/j.envpol.2003.08.020

Ginocchio, R., Rodríguez, P., Badilla-Ohlbaum, R., Allen, H., & Lagos, G. (2002). Effect of soil copper content and PH on copper uptake of selected vegetables grown under controlled conditions. Environmental Toxicology & Chemistry, 21, 117–125. doi: https://doi.org/10.1002/etc.5620210828

Ginocchio, R., Sánchez, P., De La Fuente, L. M., Camus, I., Bustamante, E., Silva, Y., …Rodríguez, P. H. (2006). Agricultural soils spiked with copper mine wastes and copper concentrate: Implications for copper bioavailability and bioaccumulation. Environmental Toxicology and Chemistry, 25, 712–718. doi: https://doi.org/10.1897/05-105R.1

González, S. (1994). Estado de la contaminación de los suelos en Chile. In G. Espinoza, P. Pisani, L. Contreras, & P.

Camus (Eds.), Perfil ambiental de Chile (pp. 199–234). Santiago, Chile: Comisión Nacional del Medio Ambiente. http://web.usach.cl/ima/cap11.htm

González, I., Muena, V., Cisternas, M., & Neaman, A. (2008). Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de Puchuncaví, Chile central. Revista Chilena de Historia Natural, 81(2), 279–291. doi: https://doi.org/10.4067/S0716-078X2008000200010

Karczewska, A., Mocek, A., Goliński, P., & Mleczek, M. (2015). Phytoremediation of copper-contaminated soil. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation (pp. 143–170). Switzerland: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-10969-5_12

Kruskal, W., & Wallis, W. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. doi: https://doi.org/10.1080/01621459.1952.10483441

Kwon-Rae, K., & Owens, G. (2009). Chemodynamics of heavy metals in long-term contaminated soils: Metal speciation in soil solution. Journal of Environmental Sciences, 21(11), 1532–1540. doi: https://doi.org/10.1016/S1001-0742(08)62451-1

Li, X., & Huang, L. (2015). Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Critical Reviews in Environmental Science and Technology, 45(8), 813–839. doi: https://doi.org/10.1080/10643389.2014.921977

L’vov, B. V. (2005). Fifty years of atomic absorption spectrometry. Journal of Analytical Chemistry, 60(4), 382–392. doi: https://doi.org/10.1007/s10809-005-0103-0

Mackie, K. A., Müller, T., & Kandeler, E. (2012). Remediation of copper in vineyards – A mini review. Environmental Pollution, 167, 16–26. doi: https://doi.org/10.1016/j.envpol.2012.03.023

Meier, S., Alvear, M., Borie, F., Aguilera, P., Ginocchio, R., & Cornejo P. (2012). Influence of copper on root exudates patterns in some metallophytes and a g r i c u l t u r a l plants. Ecotoxicology and Environmental Safety, 75, 8–15. doi: https://doi.org/10.1016/j.ecoenv.2011.08.029

Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments. An emerging remediation technology. Environmental Health Perspectives, 116, 278–283. doi: https://doi.org/10.1289/ehp.10608

Morales, L., Canessa, F., Mattar, C., Orrego, R., & Matus, F. (2006). Caracterización y zonificación edáfica y climática de la Región de Coquimbo, Chile. Revista de la Ciencia del Suelo y Nutrición Vegetal, 6(3), 52–74. doi: https://doi.org/10.4067/S0718-27912006000300005

Nanda-Kumar, P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29, 1232–1238. doi: https://doi.org/10.1021/es00005a014

Neuman, D., & Ford, K. L. (2006). Phytostabilization as a remediation alternative at mining sites. http://www.blm.gov/nstc/library/pdf/TN420.pdf

Ortiz-Calderón, C., Alcaide, O., & Kao, J. L. (2008). Copper distribution in leaves and roots of plants growing on a copper mine-tailing storage facility in northern Chile. Revista Chilena de Historia Natural, 81, 489–499. doi: https://doi.org/10.4067/S0716-078X2008000400004

Pinto, E., Aguiar, A., & Ferreira, I. (2014). Influence of soil chemistry and plant physiology in the phytoremediation of Cu, Mn, and Zn. Critical Reviews in Plant Sciences, 33(5), 351–373. doi: https://doi.org/10.1080/07352689.2014.885729

Pizarro, R., Valdés, R., García-Chevesich, P., Vallejos, C., Sangüesa, C., Morales, C., …Fuentes, R. (2012). Latitudinal analysis of rainfall intensity and mean annual precipitation in Chile. Chilean Journal of Agricultural Research, 72(2), 252–261. doi: https://doi.org/10.4067/S0718-58392012000200014

Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181. doi: https://doi.org/10.1016/j.plantsci.2010.08.016

Salt, D. E., Blaylock, M., Nanda-Kumar, P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology, 13, 468–475. doi: https://doi.org/10.1038/nbt0595-468

Sarma, H. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118– 138. doi: https://doi.org/10.3923/jest.2011.118.138

Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Journal of Toxicology and Environmental Health, Part A, 73(2-3), 114–127. doi: https://doi.org/10.1080/15287390903337100

Valdés-Pineda, R., Pizarro, R., Valdés, J. B., Carrasco, J. F., García-Chevesich, P., & Olivares, C. (2015). Spatio-temporal trends of precipitation, its aggressiveness and concentration, along the Pacific coast of South America (36°–49 °S). Hydrological Sciences Journal. doi: https://doi.org/10.1080/02626667.2015.1085989

Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J. B., Olivares, C., Vera, M., ... & Helwig, B. (2014). Water governance in Chile: Availability, management and climate change. Journal of Hydrology, 519, 2538–2567. doi: https://doi.org/10.1016/j.jhydrol.2014.04.016

Verdejo, J., Ginocchio, R., Sauvé, S., Salgado, E., & Neaman, A. (2015). Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and environmental safety, 122, 171–177. doi: https://doi.org/10.1016/j.ecoenv.2015.07.026

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente