Revista Chapingo Serie Ciencias Forestales y del Ambiente
Uso de vehículos aéreos no tripulados para la estimación de almacén de carbono en biomasa aérea de matorral subtropical
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

algoritmo ForestTools
digitalización manual
ecuaciones alométricas
imágenes aéreas
zonas áridas

Cómo citar

Vega-Puga, M. G., Romo-León, J. R., Castellanos, A. E., Castillo-Gámez, R. A., & Garatuza-Payán, J. (2024). Uso de vehículos aéreos no tripulados para la estimación de almacén de carbono en biomasa aérea de matorral subtropical. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(2), 1–18. https://doi.org/10.5154/r.rchscfa.2023.06.043

Resumen

Introducción: Los estudios de almacenamiento de carbono en zonas áridas y semiáridas son escasos. El uso de VANT (vehículos aéreos no tripulados) ha facilitado el monitoreo de zonas de interés, lo cual es difícil con técnicas que implican un costo mayor.

Objetivo: Desarrollar modelos predictivos, mediante el uso de imágenes aéreas, para la estimación de almacén de carbono en biomasa aérea (ACBA) en especies de matorral subtropical de Sonora.

Materiales y métodos: Se estimó el ACBA de especies leñosas (>2 m de altura) con métricas recabadas en campo y ecuaciones alométricas. Las métricas de vegetación remotas (cámara montada en VANT) se obtuvieron acorde con los métodos manual (digitalización) y automatizado (algoritmo ForestTools). Se hicieron pruebas no paramétricas (Wilcoxon) para determinar diferencias entre las métricas de campo y de imágenes aéreas. Estas se utilizaron para la construcción de modelos predictivos del ACBA a nivel individuo.

Resultados y discusión: La prueba de Wilcoxon indicó que la altura máxima de copa estimada en campo y con ambas aproximaciones es similar (P > 0.05), mientras que el área de copa y volumen de copa in situ no presentan diferencia significativa (P > 0.05) con la aproximación manual, pero sí con la automatizada (P < 0.05). Los modelos predictivos de ACBA con aproximaciones remotas fueron estadísticamente significativos (P < 0.001). Esto sugiere que la estimación de carbono con imágenes es capaz de explicar la variabilidad del método de referencia a nivel individuo.

Conclusión: Las imágenes aéreas constituyen una herramienta viable y práctica para la estimación de ACBA de árboles y arbustos en comunidades áridas/semiáridas.

https://doi.org/10.5154/r.rchscfa.2023.06.043
PDF

Citas

Acuña-Acosta, D. M., Castellanos-Villegas, A. E., Llano-Sotelo, J. M., & Romo-León, J. R. (2021). Responses of photosynthetic and stoichiometric traits to aridity in species and functional types of two Sonoran Desert plant communities. Botanical Sciences, 99(2), 257–278. https://doi.org/10.17129/BOTSCI.2708

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., & Zeng, N. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348(6237), 895–899. https://doi.org/10.1126/science.aaa1668

Arriaga-Ramírez, S., & Cavazos, T. (2010). Regional trends of daily precipitation indices in northwest Mexico and southwest United States. Journal of Geophysical Research Atmospheres, 115(14), 1–10. https://doi.org/10.1029/2009JD013248

Barthelme, S. (2018). Imager: Image processing library based on ‘CImg’. Version 0.41.1. R Package. https://cran.r-project.org/web/packages/imager/imager.pdf

Biederman, J. A., Scott, R. L., Arnone, J. A., Jasoni, R. L., Litvak, M. E., Moreo, M. T., Papuga, S. A., Ponce-Campos, G. E., Schreiner- McGraw, A. P., & Vivoni, E. R. (2018). Shrubland carbon sink depends upon winter water availability in the warm deserts of North America. Agricultural and Forest Meteorology, 249, 407– 419. https://doi.org/10.1016/j.agrformet.2017.11.005

Bradley, B. A., Houghton, R. A., Mustard, J. F., & Hamburg, S. P. (2006). Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Global Change Biology, 12(10), 1815–1822. https://doi.org/10.1111/j.1365-2486.2006.01232.x

Briones, O., Búrquez, A., Martínez-Yrízar, A., Pavón, N., & Perroni, Y. (2018). Biomasa y productividad en las zonas áridas mexicanas. Madera y Bosques, 24. https://doi.org/10.21829/myb.2018.2401898

Búrquez, A., Martínez-Yrízar A., Núñez, S., Quintero, T., & Aparicio, A. (2010). Aboveground biomass in three Sonoran Desert communities: Variability within and among sites using replicated plot harvesting. Journal of Arid Environments, 74, 1240–1247. https://doi.org/10.1016/j.jaridenv.2010.04.004

Castellanos, A. E., Hinojo‐Hinojo, C., Rodriguez, J. C., Romo‐Leon, J. R., Wilcox, B. P., Biederman, J. A., & Peñuelas, J. (2022). Plant functional diversity influences water and carbon fluxes and their use efficiencies in native and disturbed dryland ecosystems. Ecohydrology, 15(5), e2415. https://doi.org/10.1002/eco.2415

Choza-Farías, S., Romo-Leon, J. R., & Castellanos-Villegas, A. E. (2021). Análisis de la respuesta productiva ante la variabilidad climática en tipos de vegetación exótica y nativa del Desierto Sonorense. Revista Chapingo Serie Zonas Áridas, 20(1). https://doi.org/10.5154/r.rchsza.2021.20.3

Cornejo-Denman, L., Romo-Leon, J. R., Castellanos, A. E., Diaz- Caravantes, R. E., Moreno-Vázquez, J. L., & Mendez-Estrella, R. (2018). Assessing riparian vegetation condition and function in disturbed sites of the arid northwestern Mexico. Land, 7(1), 8–10. https://doi.org/10.3390/land7010013

Creasy, M. B., Tinkham, W. T., Hoffman, C. M., & Vogeler, J. C. (2021). Potential for individual tree monitoring in ponderosa pine dominated forests using unmanned aerial system structure from motion point clouds. Canadian Journal of Forest Research, 51(8), 1093–1105. https://doi.org/10.1139/cjfr-2020-0433

Ding, J., Zhipeng, L., Zhang, H., Zhang, P., Xiaoming, C., & Feng, Y. (2022). Quantifying the aboveground biomass (AGB) of Gobi Desert Shrub communities in Northwestern China based on unmanned aerial vehicle (UAV) RGB images. Land, 11(4), 543. https://doi.org/10.3390/land11040543

Environmental Systems Research Institute (ESRI). (2011). ArcGIS: version 10.1. Redlands, CA. https://www.esri.com/en-us/arcgis/products

Escalante, J. O., Cáceres, J. J., & Porras-Díaz, H. (2016). Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV. Tecnura, 20(50), 119–140. https://www.redalyc.org/journal/2570/257049511010/html/

Gallardo-Salazar, J. L., & Pompa-García, M. (2020). Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing, 12(24), 1–22. https://doi.org/10.3390/rs12244144

George, G., & Schillebeeckx, S. J. (2018). Managing natural resources: Organizational strategy, behaviour and dynamics. Edward Elgar Publishing.

Gonzalez Musso, R. F., Oddi, F. J., Goldenberg, M. G., & Garibaldi, L. A. (2020). Applying unmanned aerial vehicles (UAVs) to map shrubland structural attributes in northern Patagonia, Argentina. Canadian Journal of Forest Research, 50(7), 615-623. https://doi.org/10.1139/cjfr-2019-0440@cjfrjuvs-uav.issue1

Guo, Z. C., Wang, T., Liu, S. L., Kang, W. P., Chen, X., Feng, K., Zhang, X., & Zhi, Y. (2021). Biomass and vegetation coverage survey in the Mu Us sandy land-based on unmanned aerial vehicle RGB images. International Journal of Applied Earth Observation and Geoinformation, 94, 102239. https://doi.org/10.1016/j.jag.2020.102239

Hinojo-Hinojo, C., Castellanos, A. E., Huxman, T., Rodríguez, J. C., Vargas, R., Romo-León, J. R., & Biederman, J. A. (2019). Native shrubland and managed buffelgrass savanna in drylands: Implications for ecosystem carbon and water fluxes. Agricultural and Forest Meteorology, 268, 269–278. https://doi. org/10.1016/j.agrformet.2019.01.030

Holiaka, D., Kato, H., Yoschenko, V., Onda, Y., Igarashi, Y., Nanba, K., Diachuk, P., Holiaka, M., Zadorozhniuk, R., Kashparov, V., & Chyzhevskyi, I. (2021). Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone. Journal of Environmental Management, 295. https://doi.org/10.1016/j.jenvman.2021.113319

Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports, 5(3), 155–168. https://doi. org/10.1007/s40725-019-00094-3

Issa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2020). A review of terrestrial carbon assessment methods using geo-spatial technologies with emphasis on arid lands. Remote Sensing, 12(12). https://doi.org/10.3390/rs12122008

Kachamba, D. J., Ørka, H. O., Gobakken, T., Eid, T., & Mwase, W. (2016). Biomass estimation using 3D data from unmanned aerial vehicle imagery in a tropical woodland. Remote Sensing, 8(11), 1–18. https://doi.org/10.3390/rs8110968

Kim, J. Y., & Chung, Y. S. (2021). A short review of RGB sensor applications for accessible high-throughput phenotyping. Journal of Crop Science and Biotechnology 24(5), 495–499. https://doi.org/10.1007/s12892-021-00104-6

Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote Sensing, 9(9), 935. https://doi.org/10.3390/s9090935

Lai, H. R., Chong, K. Y., Yee, A. T. K., Mayfield, M. M., & Stouffer, D. B. (2022). Non-additive biotic interactions improve predictions of tropical tree growth and impact community size structure. Ecology, 103(2). https://doi.org/10.1002/ecy.3588

Lindner, T., Puck, J., & Verbeke, A. (2020). Misconceptions about multicollinearity in international business research: Identification, consequences, and remedies. Journal of International Business Studies, 51, 283–298. https://doi.org/10.1057/s41267-019-00257-1

McClaran, M. P., McMurtry, C. R., & Archer, S. R. (2013). A tool for estimating impacts of woody encroachment in arid grasslands: Allometric equations for biomass, carbon, and nitrogen content in Prosopis velutina. Journal of Arid Environments, 88, 39– 42. https://doi.org/10.1016/j.jaridenv.2012.08.015

McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate change. Global Change Biology, 23(8), 2941–2961. https://doi.org/10.1111/gcb.13629

Montaño, N. M., Ayala, F., Bullock, S. H., Briones, O., Oliva, F. G., Sánchez, R. G., Maya, Y., Perroni, Y., Siebe, C., Torres, Y. T., Troyo, E., & Yépez, E. (2016). Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: síntesis y perspectivas. Terra Latinoamericana, 34(1), 39–59. https://www.redalyc.org/articulo.oa?id=57344471003

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.

Navarro, A., Young, M., Allan, B., Carnell, P., Macreadie, P., & Ierodiaconou, D. (2020). The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sensing of Environment, 242. https://doi.org/10.1016/j.rse.2020.111747

Özyeşil, O., Voroninski, V., Basri, R., & Singer, A. (2017). A survey of structure from motion. Acta Numerica, 26, 305–364. https://doi.org/10.1017/S096249291700006X

Pordel, F., Ebrahimi, A., & Azizi, Z. (2018). Canopy cover or remotely sensed vegetation index, explanatory variables of above-ground biomass in an arid rangeland, Iran. Journal of Arid Land, 10(5), 767–780. https://doi.org/10.1007/s40333-018-0017-y

Popescu, S. C., & Wynne, R. H. (2013). Seeing the trees in the forest. Photogrammetric Engineering & Remote Sensing, 70(5), 589–604. https://doi.org/10.14358/pers.70.5.589

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., & van der Werf, G. R. (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502), 600–603. https://doi.org/10.1038/nature13376

Rojas-García, F., De Jong, B., Martínez-Zurimendí, P., & Paz-Pellat, F. (2015). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72, 835–864. https://doi.org/10.1007/s13595-015-0456-y

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591. https://doi.org/10.2307/2333709

Silva, J. A. (2008). Fichas técnicas sobre características tecnológicas y usos de maderas comercializadas en México. México: Coordinación, Educación y Desarrollo Tecnológico- Comisión Nacional Forestal (CONAFOR).

Sun, Z., Wang, X., Wang, Z., Yang, L., Xie, Y., & Huang, Y. (2021). UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. Journal of Plant Ecology, 14(6), 1003–1023. https://doi.org/10.1093/jpe/rtab089

R Foundation. (2021). The R Project for Statistical Computing [R]. RStudio, version 4.1.1. https://cran.r-project.org/bin/windows/base/old/4.1.1/

Vivar-Vivar, E. D., Pompa-García, M., Martínez-Rivas, J. A., & Mora- Tembre, L. A. (2022). UAV-Based characterization of tree-attributes and multispectral indices in an uneven-aged mixed conifer-broadleaf forest. Remote Sensing, 14(12), 2775. https://doi.org/10.3390/rs14122775

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In S. Kotz, & N. Johnson (Eds.), Breakthroughs in statistics (pp. 196–202). Springer.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente