Revista Chapingo Serie Ciencias Forestales y del Ambiente
Use of unmanned aerial vehicles for estimating carbon storage in subtropical shrubland aboveground biomass
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Keywords

ForestTools algorithm
manual digitizing
allometric equations
aerial imagery
arid zones

How to Cite

Vega-Puga, M. G., Romo-León, J. R., Castellanos, A. E., Castillo-Gámez, R. A., & Garatuza-Payán, J. (2024). Use of unmanned aerial vehicles for estimating carbon storage in subtropical shrubland aboveground biomass. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(2), 1–18. https://doi.org/10.5154/r.rchscfa.2023.06.043

Abstract

Introduction: Carbon storage studies in arid and semi-arid zones are limited. The use of UAVs (unmanned aerial vehicles) has made it easier to monitor areas of interest, which is difficult with more costly techniques.

Objective: The aim of this study is to develop predictive models, using aerial images, to estimate aboveground carbon biomass (ABCS) in subtropical shrub species of Sonora.

Materials and methods: ABCS of tree species (>2 m in height) was estimated using field-collected metrics and allometric equations. Remote vegetation metrics (camera mounted on UAV) were obtained using both manual methods (digitization) and automated methods (ForestTools algorithm). Non-parametric tests (Wilcoxon) were conducted to determine differences between field metrics and aerial image metrics. These were used to construct predictive models of individual-level ABCS.

Results and discussion: The Wilcoxon test indicated that the maximum crown height estimated in the field and with both approaches is similar (P > 0.05), while crown area and crown volume in situ showed no significant differences (P > 0.05) with the manual approach but shows significant differences with the automated approach (P < 0.05). The predictive models of aboveground carbon biomass (ABCS) with remote approaches were statistically significant (P < 0.001). This suggests that carbon estimation using images can explain the variability of the reference method at the individual level.

Conclusion: Aerial imagery is a viable and practical tool for estimating ABCS of trees and shrubs in arid/ semiarid communities.

https://doi.org/10.5154/r.rchscfa.2023.06.043
PDF
Graphical abstract
Resumen gráfico

References

Acuña-Acosta, D. M., Castellanos-Villegas, A. E., Llano-Sotelo, J. M., & Romo-León, J. R. (2021). Responses of photosynthetic and stoichiometric traits to aridity in species and functional types of two Sonoran Desert plant communities. Botanical Sciences, 99(2), 257–278. https://doi.org/10.17129/BOTSCI.2708

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., & Zeng, N. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348(6237), 895–899. https://doi.org/10.1126/science.aaa1668

Arriaga-Ramírez, S., & Cavazos, T. (2010). Regional trends of daily precipitation indices in northwest Mexico and southwest United States. Journal of Geophysical Research Atmospheres, 115(14), 1–10. https://doi.org/10.1029/2009JD013248

Barthelme, S. (2018). Imager: Image processing library based on ‘CImg’. Version 0.41.1. R Package. https://cran.r-project.org/web/packages/imager/imager.pdf

Biederman, J. A., Scott, R. L., Arnone, J. A., Jasoni, R. L., Litvak, M. E., Moreo, M. T., Papuga, S. A., Ponce-Campos, G. E., Schreiner- McGraw, A. P., & Vivoni, E. R. (2018). Shrubland carbon sink depends upon winter water availability in the warm deserts of North America. Agricultural and Forest Meteorology, 249, 407– 419. https://doi.org/10.1016/j.agrformet.2017.11.005

Bradley, B. A., Houghton, R. A., Mustard, J. F., & Hamburg, S. P. (2006). Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Global Change Biology, 12(10), 1815–1822. https://doi.org/10.1111/j.1365-2486.2006.01232.x

Briones, O., Búrquez, A., Martínez-Yrízar, A., Pavón, N., & Perroni, Y. (2018). Biomasa y productividad en las zonas áridas mexicanas. Madera y Bosques, 24. https://doi.org/10.21829/myb.2018.2401898

Búrquez, A., Martínez-Yrízar A., Núñez, S., Quintero, T., & Aparicio, A. (2010). Aboveground biomass in three Sonoran Desert communities: Variability within and among sites using replicated plot harvesting. Journal of Arid Environments, 74, 1240–1247. https://doi.org/10.1016/j.jaridenv.2010.04.004

Castellanos, A. E., Hinojo‐Hinojo, C., Rodriguez, J. C., Romo‐Leon, J. R., Wilcox, B. P., Biederman, J. A., & Peñuelas, J. (2022). Plant functional diversity influences water and carbon fluxes and their use efficiencies in native and disturbed dryland ecosystems. Ecohydrology, 15(5), e2415. https://doi.org/10.1002/eco.2415

Choza-Farías, S., Romo-Leon, J. R., & Castellanos-Villegas, A. E. (2021). Análisis de la respuesta productiva ante la variabilidad climática en tipos de vegetación exótica y nativa del Desierto Sonorense. Revista Chapingo Serie Zonas Áridas, 20(1). https://doi.org/10.5154/r.rchsza.2021.20.3

Cornejo-Denman, L., Romo-Leon, J. R., Castellanos, A. E., Diaz- Caravantes, R. E., Moreno-Vázquez, J. L., & Mendez-Estrella, R. (2018). Assessing riparian vegetation condition and function in disturbed sites of the arid northwestern Mexico. Land, 7(1), 8–10. https://doi.org/10.3390/land7010013

Creasy, M. B., Tinkham, W. T., Hoffman, C. M., & Vogeler, J. C. (2021). Potential for individual tree monitoring in ponderosa pine dominated forests using unmanned aerial system structure from motion point clouds. Canadian Journal of Forest Research, 51(8), 1093–1105. https://doi.org/10.1139/cjfr-2020-0433

Ding, J., Zhipeng, L., Zhang, H., Zhang, P., Xiaoming, C., & Feng, Y. (2022). Quantifying the aboveground biomass (AGB) of Gobi Desert Shrub communities in Northwestern China based on unmanned aerial vehicle (UAV) RGB images. Land, 11(4), 543. https://doi.org/10.3390/land11040543

Environmental Systems Research Institute (ESRI). (2011). ArcGIS: version 10.1. Redlands, CA. https://www.esri.com/en-us/arcgis/products

Escalante, J. O., Cáceres, J. J., & Porras-Díaz, H. (2016). Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV. Tecnura, 20(50), 119–140. https://www.redalyc.org/journal/2570/257049511010/html/

Gallardo-Salazar, J. L., & Pompa-García, M. (2020). Detecting individual tree attributes and multispectral indices using unmanned aerial vehicles: Applications in a pine clonal orchard. Remote Sensing, 12(24), 1–22. https://doi.org/10.3390/rs12244144

George, G., & Schillebeeckx, S. J. (2018). Managing natural resources: Organizational strategy, behaviour and dynamics. Edward Elgar Publishing.

Gonzalez Musso, R. F., Oddi, F. J., Goldenberg, M. G., & Garibaldi, L. A. (2020). Applying unmanned aerial vehicles (UAVs) to map shrubland structural attributes in northern Patagonia, Argentina. Canadian Journal of Forest Research, 50(7), 615-623. https://doi.org/10.1139/cjfr-2019-0440@cjfrjuvs-uav.issue1

Guo, Z. C., Wang, T., Liu, S. L., Kang, W. P., Chen, X., Feng, K., Zhang, X., & Zhi, Y. (2021). Biomass and vegetation coverage survey in the Mu Us sandy land-based on unmanned aerial vehicle RGB images. International Journal of Applied Earth Observation and Geoinformation, 94, 102239. https://doi.org/10.1016/j.jag.2020.102239

Hinojo-Hinojo, C., Castellanos, A. E., Huxman, T., Rodríguez, J. C., Vargas, R., Romo-León, J. R., & Biederman, J. A. (2019). Native shrubland and managed buffelgrass savanna in drylands: Implications for ecosystem carbon and water fluxes. Agricultural and Forest Meteorology, 268, 269–278. https://doi. org/10.1016/j.agrformet.2019.01.030

Holiaka, D., Kato, H., Yoschenko, V., Onda, Y., Igarashi, Y., Nanba, K., Diachuk, P., Holiaka, M., Zadorozhniuk, R., Kashparov, V., & Chyzhevskyi, I. (2021). Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone. Journal of Environmental Management, 295. https://doi.org/10.1016/j.jenvman.2021.113319

Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports, 5(3), 155–168. https://doi. org/10.1007/s40725-019-00094-3

Issa, S., Dahy, B., Ksiksi, T., & Saleous, N. (2020). A review of terrestrial carbon assessment methods using geo-spatial technologies with emphasis on arid lands. Remote Sensing, 12(12). https://doi.org/10.3390/rs12122008

Kachamba, D. J., Ørka, H. O., Gobakken, T., Eid, T., & Mwase, W. (2016). Biomass estimation using 3D data from unmanned aerial vehicle imagery in a tropical woodland. Remote Sensing, 8(11), 1–18. https://doi.org/10.3390/rs8110968

Kim, J. Y., & Chung, Y. S. (2021). A short review of RGB sensor applications for accessible high-throughput phenotyping. Journal of Crop Science and Biotechnology 24(5), 495–499. https://doi.org/10.1007/s12892-021-00104-6

Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote Sensing, 9(9), 935. https://doi.org/10.3390/s9090935

Lai, H. R., Chong, K. Y., Yee, A. T. K., Mayfield, M. M., & Stouffer, D. B. (2022). Non-additive biotic interactions improve predictions of tropical tree growth and impact community size structure. Ecology, 103(2). https://doi.org/10.1002/ecy.3588

Lindner, T., Puck, J., & Verbeke, A. (2020). Misconceptions about multicollinearity in international business research: Identification, consequences, and remedies. Journal of International Business Studies, 51, 283–298. https://doi.org/10.1057/s41267-019-00257-1

McClaran, M. P., McMurtry, C. R., & Archer, S. R. (2013). A tool for estimating impacts of woody encroachment in arid grasslands: Allometric equations for biomass, carbon, and nitrogen content in Prosopis velutina. Journal of Arid Environments, 88, 39– 42. https://doi.org/10.1016/j.jaridenv.2012.08.015

McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., & Thompson, S. E. (2017). Hydrologic refugia, plants, and climate change. Global Change Biology, 23(8), 2941–2961. https://doi.org/10.1111/gcb.13629

Montaño, N. M., Ayala, F., Bullock, S. H., Briones, O., Oliva, F. G., Sánchez, R. G., Maya, Y., Perroni, Y., Siebe, C., Torres, Y. T., Troyo, E., & Yépez, E. (2016). Almacenes y flujos de carbono en ecosistemas áridos y semiáridos de México: síntesis y perspectivas. Terra Latinoamericana, 34(1), 39–59. https://www.redalyc.org/articulo.oa?id=57344471003

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.

Navarro, A., Young, M., Allan, B., Carnell, P., Macreadie, P., & Ierodiaconou, D. (2020). The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sensing of Environment, 242. https://doi.org/10.1016/j.rse.2020.111747

Özyeşil, O., Voroninski, V., Basri, R., & Singer, A. (2017). A survey of structure from motion. Acta Numerica, 26, 305–364. https://doi.org/10.1017/S096249291700006X

Pordel, F., Ebrahimi, A., & Azizi, Z. (2018). Canopy cover or remotely sensed vegetation index, explanatory variables of above-ground biomass in an arid rangeland, Iran. Journal of Arid Land, 10(5), 767–780. https://doi.org/10.1007/s40333-018-0017-y

Popescu, S. C., & Wynne, R. H. (2013). Seeing the trees in the forest. Photogrammetric Engineering & Remote Sensing, 70(5), 589–604. https://doi.org/10.14358/pers.70.5.589

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., Running, S. W., Sitch, S., & van der Werf, G. R. (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502), 600–603. https://doi.org/10.1038/nature13376

Rojas-García, F., De Jong, B., Martínez-Zurimendí, P., & Paz-Pellat, F. (2015). Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Annals of Forest Science, 72, 835–864. https://doi.org/10.1007/s13595-015-0456-y

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591. https://doi.org/10.2307/2333709

Silva, J. A. (2008). Fichas técnicas sobre características tecnológicas y usos de maderas comercializadas en México. México: Coordinación, Educación y Desarrollo Tecnológico- Comisión Nacional Forestal (CONAFOR).

Sun, Z., Wang, X., Wang, Z., Yang, L., Xie, Y., & Huang, Y. (2021). UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. Journal of Plant Ecology, 14(6), 1003–1023. https://doi.org/10.1093/jpe/rtab089

R Foundation. (2021). The R Project for Statistical Computing [R]. RStudio, version 4.1.1. https://cran.r-project.org/bin/windows/base/old/4.1.1/

Vivar-Vivar, E. D., Pompa-García, M., Martínez-Rivas, J. A., & Mora- Tembre, L. A. (2022). UAV-Based characterization of tree-attributes and multispectral indices in an uneven-aged mixed conifer-broadleaf forest. Remote Sensing, 14(12), 2775. https://doi.org/10.3390/rs14122775

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In S. Kotz, & N. Johnson (Eds.), Breakthroughs in statistics (pp. 196–202). Springer.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente