Resumen
Introducción: Los triglicéridos (TG) representan 98 % de la composición de los aceites vegetales. La evaluación de TG en extractos de semillas de calabazas es importante para detectar efectos ocasionados por la domesticación.
Objetivo: Comparar el perfil de triglicéridos de calabazas silvestres vs. domesticadas mediante el sistema HPTLC en fase reversa.
Materiales y métodos: Se recolectaron semillas de calabazas silvestres (Cucurbita foetidissima Kunth y C. radicans Naudin) en estado maduro en tres sitios del Altiplano Mexicano y se adquirieron semillas de calabazas domesticadas (C. pepo L., C. moschata Duchesne, C. argyrosperma K. Koch) y de girasol (Helianthus annuus L.). Las semillas trituradas se sometieron a extracción en equipo Soxhlet con hexano, para obtener los lípidos. Del extracto de lípidos neutros, los TG se separaron en placas de vidrio de 20 x 10 HPTLC Gel de Sílice 60. Se utilizaron TG insaturados como referencia. Las bandas se analizaron con el software de uso libre GelAnalyzer.
Resultados y discusión: El perfil de TG del extracto de las semillas de calabazas, tanto silvestres como domesticadas, guarda similitud entre sus bandas más abundantes. En ambas muestras predomina el TG 18:2/18:2/18:2. En las calabazas silvestres destacan bandas de TG 18:3/18:3/18:3. Las calabazas domesticadas presentan TG con insaturaciones en la cadena de carbono en menor proporción que las especies silvestres, lo que les confiere a estas un valor nutricional mayor.
Conclusiones: Las semillas de calabazas silvestres muestran un perfil característico de TG insaturados. El perfil cromatográfico y el análisis de imágenes con GelAnalyzer permitieron la diferenciación de las muestras con base en las bandas obtenidas.
Citas
Adepoju, G. K. A., & Adebanjo, A. A. (2011). Effect of consumption of Cucurbita pepo seeds on haematological and biochemical parameters. African Journal of Pharmacy and Pharmacology, 5(1), 18–22. doi: https://doi.org/10.5897/AJPP10.186
Adewuyi, A., & Oderinde, R. A. (2012). Analysis of the lipids and molecular speciation of the triacylglycerol of the oils of Luffa cylindrica and Adenopus breviflorus. CyTA-Journal of Food, 10(4), 313–320. doi: https://doi.org/10.1080/19476337.2012.658870
Akintayo, C. O., Akintayo, E. T., Akinsola, A., & Ziegler, T. (2009). Matrix-Assisted Laser Desorption Ionization time of flight mass spectrometric analysis of some curcurbita oils for triacylglycerol composition. Rivista Italiana Delle Sostanze Grasse, 86(4), 237–241. Retrieved from https://www.researchgate.net/publication/236271716
Ali, M. A., Nargis, A., Othman, N. H., Noor, A. F., Sadik, G., & Hossen, J. (2017). Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. International Journal of Food Properties, 20(11), 2569–2580. doi: https://doi.org/10.1080/10942912.2016.1244544
Arslan, F. N., Gönül, A. K., & Yilmaz, İ. (2017). Physicochemical characteristics, pesticide residue and aflatoxin contamination of cold pressed pumpkin seed (Cucurbita pepo l.) oils from central Anatolia region of Turkey. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 18(2), 468–483. doi: https://doi.org/10.18038/aubtda.286649
Azimova, S. S., Glushenkova, A. I., & Vinogradova, V. I. (2011). Lipids, lipophilic components, and essential oils from plant sources. London: Springer. doi: https://doi.org/10.1007/978-0-85729-323-7
Báez-Pérez, E., Quiñones-Gálvez, J., Santiesteban-Toca, C., & Molina-Torres, J. (2017). Sistema de análisis de imágenes de placas de HPTLC. Revista Cubana de Ciencias informáticas, 11(3), 92–104. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-18992017000300008&lng=es&tlng=es
Bardaa, S., Halima, N. B., Aloui, F., Mansour, R. B., Jabeur, H., Bouaziz, M., & Sahnoun, Z. (2016). Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease, 15(1), 1–12. doi: https://doi.org/10.1186/s12944-016-0237-0
Barrera-Redondo, J., Sanchez-de La Vega, G., Aguirre-Liguori, J. A., Castellanos-Morales, G., Gutiérrez-Guerrero, Y. T., AguirreDugua, X., ... Eguiarte, L. E. (2021). The domestication of
Cucurbita argyrosperma as revealed by the genome of its wild relative. Horticulture Research, 8, 109. doi: https://doi.org/10.1038/s41438-021-00544-9
Benalia, M., Djeridane, A., Gourine, N., Nia, S., Ajandouz, E., & Yousfi, M. (2015). Fatty acid profile, tocopherols content and antioxidant activity of algerian pumpkin seeds oil (Cucurbita pepo L.). Mediterranean Journal of Nutrition and Metabolism, 8(1), 9–25. doi: https://doi.org/10.3233/MNM-140023
Beneito, C. M., Moreno, G. D., García, R. F., Bouza, M., Gilbert, L. B., & Molina, D. A. (2020). Direct analysis of olive oil and other vegetable oils by mass spectrometry: a review. TrAC Trends in Analytical Chemistry, 132, 116046. doi: https://doi.org/10.1016/j.trac.2020.116046
Bouazzaoui, N., & Mulengi, J. K. (2018). Fatty acids and mineral composition of melon (Cucumis melo) and pumpkin (Cucurbita moschata) seeds. Journal of Herbs, Spices & Medicinal Plants, 24(4), 315–322. doi: https://doi.org/10.1080/10496475.2018.1485125
Cañigueral, S., Frommenwiler, D., Reich, E., & Vila, R. (2018). High performance thin-layer chromatography (HPTLC) in the quality control of herbal products. In D. Muñoz-Torrero, Y. Cajal, & J. Llobet (Eds.), Recent advances in pharmaceutical sciences VIII (pp. 119–136). Kerala, India: Research Signpost. Retrieved from http://hdl.handle.net/2445/128014
Cherif, A. O., Leveque, N., Messaouda, M. B., Kallel, H., Tchapla, A., & Moussa, F. (2014). NARP-HPLC/MS5 and silver cationization fingerprinting of triacylglycerols in wild and cultivar Tunisian peanut kernels. LWT-Food Science and Technology, 57(1), 236–242. doi: https://doi.org/10.1016/j.lwt.2014.01.031
Contreras-Gallegos, E., Domínguez-Pacheco, F. A., HernándezAguilar, C., Salazar-Montoya, J. A., Ramos-Ramírez, E. G., & Cruz-Orea, A. (2017). Calor específico de los aceites vegetales en función de la temperatura obtenido por calorimetría de barrido adiabático. Revista de Análisis Térmico y Calorimetría, 128(1), 523–531. doi: https://doi.org/10.1007/s10973-016-5864-1
Cossignani, L., Pollini, L., & Blasi, F. (2019). Invited review: Authentication of milk by direct and indirect analysis of triacylglycerol molecular species. Journal of Dairy Science, 102(7), 5871–5882. doi: https://doi.org/10.3168/jds.2019-16318
Eder, K. (1995). Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B, 671(1-2), 113–131. doi: https://doi.org/10.1016/0378-4347(95)00142-6
Council of Europe, European Pharmacopoeia Commission, European Directorate for the Quality of Medicines & Healthcare. (2010). European Pharmacopoeia (7th ed.). European Pharmacopoeia Commission. (2011). Identification of fatty oils by thin-layer chromatography. France: Ed. Strasbourg. Retrieved from https://file.wuxuwang.com/yaopinbz/EP8.0_1_00072.pdf
Facciotti, D., & Knauf, V. (1998). Triglycerides as products of photosynthesis. Genetic engineering, fatty acid composition and structure of triglycerides. In P. A. Siegenthaler, & N. Murata (Eds.), Lipids in photosynthesis: structure, function and genetics (pp. 225–248). Dordrecht: Springer. doi: https://doi.org/10.1007/0-306-48087-5_12
Fedko, M., Kmiecik, D., Siger, A., Kulczyński, B., Przeor, M., & Kobus-Cisowska, J. (2020). Comparative characteristics of oil composition in seeds of 31 Cucurbita varieties. Journal of Food Measurement and Characterization, 14(2), 894–904. doi: https://doi.org/10.1007/s11694-019-00339-6
Gao, B., Luo, Y., Lu, W., Liu, J., Zhang, Y., & Yu, L. L. (2017). Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultraperformance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Food Chemistry, 218, 569–574. doi: https://doi.org/10.1016/j.foodchem.2016.09.099
Lazar Jr., I., & Lazar, I. (2019). GelAnalyzer 19.1 Free desktop app for 1D gel electrophoresis evaluation. Retrieved from http://www.gelanalyzer.com
Hernández, C. F., Hernández, G. M., López, H. Y., López, T. R., Zamudio, F. P., Ochoa, R., E., ... Martínez, V. D. (2020). Changes in oxidative stability, composition and physical characteristics of oil from a non-conventional source before and after processing. Revista Mexicana de Ingeniería Química, 19(3), 1389–1400. doi: https://doi.org/10.24275/rmiq/Alim937
Jakab, A., Héberger, K., & Forgács, E. (2002). Comparative analysis of different plant oils by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, 976(1-2), 255–263. doi: https://doi.org/10.1016/S0021-9673(02)01233-5
Kamal‐Eldin, A., Yousif, G., Iskander, G. M., & Appelqvist, L. Å. (1992). Seed lipids of Sesamum indicum L. and related wild species in Sudan I: Fatty acids and triacylglycerols. Lipid/Fett, 94(7), 254–259. doi: https://doi.org/10.1002/lipi.19920940705
Li, Y., Yuan, F., Wu, Y., Zhang, Y., Gao, B., & Yu, L. (2020). Triacylglycerols and fatty acid compositions of cucumber, tomato, pumpkin, and carrot seed oils by ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Foods, 9(8), 970.
doi: https://doi.org/10.3390/foods9080970
Lira, R. (2001). Cucurbitaceae. In G. C. de Rzedowski & J. Rzedowski (Eds.), Flora del Bajío y de regiones adyacentes. Fascículo 92. Pátzcuaro, Michoacán, México: Instituto de EcologíaCentro Regional del Bajío. Consejo Nacional de Ciencia y Tecnología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved from http://www1.inecol.edu.mx/publicaciones/resumeness/FLOBA/Flora%2092.pdf
Lira, R., Eguiarte, L., Montes, S., Zizumbo-Villarreal, D., Marín, P. C. G., & Quesada, M. (2016). Homo sapiensCucurbita interaction in Mesoamerica: Domestication,
Dissemination, and Diversification. In R. Lira, A. Casas, & J. Blancas, (Eds.), Ethnobotany of Mexico (pp. 389–401). New York, USA: Springer. doi: https://doi.org/10.1007/978-1-4614-6669-7_15
Montesano, D., Blasi, F., Simonetti, M. S., Santini, A., & Cossignani, L. (2018). Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods, 7(3), 30. doi: https://doi.org/10.3390/foods7030030
Naik, A. V., & Sellappan, K. (2020). Chromatographic fingerprint of essential oils in plant organs of Annona muricata L. (Annonaceae) using HPTLC. Analytical Chemistry Letters, 10(2), 214–226. doi: https://doi.org/10.1080/22297928.2020.1763197
Neđeral, S., Škevin, D., Kraljić, K., Obranović, M., Papeša, S., & Bataljaku, A. (2012). Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. Journal of the American Oil Chemists’ Society, 89(9), 1763–1770. doi: https://doi.org/10.1007/s11746-012-2076-0
Nehdi, I. (2011). Characteristics, chemical composition and utilisation of Albizia julibrissin seed oil. Industrial Crops and Products, 33(1), 30–34. doi: https://doi.org/10.1016/j.indcrop.2010.08.004
Pagliuca, G., Bozzi, C., Gallo, F. R., Multari, G., Palazzino, G., Porrà, R., & Panusa, A. (2018). Triacylglycerol “hand-shape profile” of Argan oil. Rapid and simple UHPLC-PDA-ESITOF/MS and HPTLC methods to detect counterfeit Argan oil and Argan-oil-based products. Journal of Pharmaceutical and Biomedical Analysis, 150, 121–131. doi: https://doi.org/10.1016/j.jpba.2017.11.059
Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2012). Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37(1), 82–87. doi: https://doi.org/10.1016/j.indcrop.2011.12.004
Ríos-Santos, E., González-Santos, R., Cadena-Iñiguez, J., & Mera-Ovando, L. (2018). Distribución de las especies cultivadas y parientes silvestres de calabaza (CucurbitaL.) en México. AGROProductividad, 11(9), 21–28. Retrieved from https://revista-agroproductividad.org/index.php/agroproductividad/article/view/1210/983
Ruiz, S. C., González, C. A., & Cuadros, R. L., (2015). Triacylglycerols determination by high-temperature gas chromatography in the analysis of vegetable oils and foods: a review of the past 10 years. Critical Reviews in Food Science and Nutrition, 55(11), 1618–1631. doi: https://doi.org/10.1080/10408398.2012.713045
Salas, J. J., Bootello, M. A., & Garcés, R. (2015). Food uses of sunflower oils. In E. Martínez-Force, N. T. Dunford, & J. J. Salas (Eds.), Sunflower: Chemistry, production, processing, and utilization (pp. 441–464). Elsevier. doi: https://doi.org/10.1016/C2015-0-00069-7
Yoshida, H., Shougaki, Y., Hirakawa, Y., Tomiyama, Y., & Mizushina, Y. (2004). Lipid classes, fatty acid composition and triacylglycerol molecular species in the kernels of pumpkin (Cucurbita spp.) seeds. Journal of the Science of Food and Agriculture, 84(2), 158–163. doi: https://doi.org/10.1002/jsfa.1623
Zeb, A. (2012). Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry. Chemistry and Physics of Lipids, 165(5), 608–614. doi: https://doi.org/10.1016/j.chemphyslip.2012.03.004
Zeb, A., & Ahmad, S. (2017). Changes in acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation. Frontiers in Chemistry, 5(55), 1–9. doi: https://doi.org/10.3389/fchem.2017.00055
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2022 Revista Chapingo Serie Ciencias Forestales y del Ambiente