Revista Chapingo Serie Ciencias Forestales y del Ambiente
Pumpkin (Cucurbita spp.) seeds; wild versus domesticated triglycerides chromatographic profiling analysis
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Cucurbita foetidissima
Cucurbita radicans
unsaturated triglycerides
thin layer chromatography
GelAnalyzer

How to Cite

Mejía-Morales, C., Rodríguez-Macías, R., Salcedo-Pérez, E., Zamora-Natera, F., Molina-Torres, J., & Zañudo-Hernández, J. (2022). Pumpkin (Cucurbita spp.) seeds; wild versus domesticated triglycerides chromatographic profiling analysis. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(3), 385–397. https://doi.org/10.5154/r.rchscfa.2021.10.060

Abstract

Introduction: Triglycerides (TG) represent 98 % of the vegetable oils composition. The evaluation of TG in pumpkin seed extracts is valuable to perceive effects caused by domestication.
Objective: To compare the triglyceride profile of wild versus domesticated pumpkins by reversed-phase HPTLC.
Materials and methods: Wild pumpkins (Cucurbita foetidissima Kunth and C. radicans Naudin) seeds were collected at mature stage at three sites of the Mexican Plateau and seeds of domesticated pumpkins (C. pepo L., C. moschata Duchesne, C. argyrosperma K. Koch) and sunflower (Helianthus annuus L.) were acquired. Ground seeds were Soxhlet extracted with hexane to obtain the lipids. From the neutral lipid extract, TG were separated on 20 x 10 HPTLC Silica Gel 60 glass plates. Unsaturated TG were used as reference. The bands, in different tracks, were analyzed with the free-to-use GelAnalyzer software.
Results and discussion: The TG profile of both wild and domesticated pumpkin seed extract shows similarity among their most abundant bands. In both samples, TG 18:2/18:2/18:2 predominates. In wild pumpkins, TG 18:3/18:3/18:3 bands stand out. Domesticated pumpkins have lower TG with higher unsaturation chain, than wild species, which gives them a greater nutritional value.
Conclusions: Wild pumpkin seeds show a characteristic profile of unsaturated TG. Chromatographic profiling and image analysis with GelAnalyzer led to the sample’s differentiation based on the bands found.

https://doi.org/10.5154/r.rchscfa.2021.10.060
PDF

References

Adepoju, G. K. A., & Adebanjo, A. A. (2011). Effect of consumption of Cucurbita pepo seeds on haematological and biochemical parameters. African Journal of Pharmacy and Pharmacology, 5(1), 18–22. doi: https://doi.org/10.5897/AJPP10.186

Adewuyi, A., & Oderinde, R. A. (2012). Analysis of the lipids and molecular speciation of the triacylglycerol of the oils of Luffa cylindrica and Adenopus breviflorus. CyTA-Journal of Food, 10(4), 313–320. doi: https://doi.org/10.1080/19476337.2012.658870

Akintayo, C. O., Akintayo, E. T., Akinsola, A., & Ziegler, T. (2009). Matrix-Assisted Laser Desorption Ionization time of flight mass spectrometric analysis of some curcurbita oils for triacylglycerol composition. Rivista Italiana Delle Sostanze Grasse, 86(4), 237–241. Retrieved from https://www.researchgate.net/publication/236271716

Ali, M. A., Nargis, A., Othman, N. H., Noor, A. F., Sadik, G., & Hossen, J. (2017). Oxidation stability and compositional characteristics of oils from microwave roasted pumpkin seeds during thermal oxidation. International Journal of Food Properties, 20(11), 2569–2580. doi: https://doi.org/10.1080/10942912.2016.1244544

Arslan, F. N., Gönül, A. K., & Yilmaz, İ. (2017). Physicochemical characteristics, pesticide residue and aflatoxin contamination of cold pressed pumpkin seed (Cucurbita pepo l.) oils from central Anatolia region of Turkey. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 18(2), 468–483. doi: https://doi.org/10.18038/aubtda.286649

Azimova, S. S., Glushenkova, A. I., & Vinogradova, V. I. (2011). Lipids, lipophilic components, and essential oils from plant sources. London: Springer. doi: https://doi.org/10.1007/978-0-85729-323-7

Báez-Pérez, E., Quiñones-Gálvez, J., Santiesteban-Toca, C., & Molina-Torres, J. (2017). Sistema de análisis de imágenes de placas de HPTLC. Revista Cubana de Ciencias informáticas, 11(3), 92–104. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-18992017000300008&lng=es&tlng=es

Bardaa, S., Halima, N. B., Aloui, F., Mansour, R. B., Jabeur, H., Bouaziz, M., & Sahnoun, Z. (2016). Oil from pumpkin (Cucurbita pepo L.) seeds: evaluation of its functional properties on wound healing in rats. Lipids in Health and Disease, 15(1), 1–12. doi: https://doi.org/10.1186/s12944-016-0237-0

Barrera-Redondo, J., Sanchez-de La Vega, G., Aguirre-Liguori, J. A., Castellanos-Morales, G., Gutiérrez-Guerrero, Y. T., AguirreDugua, X., ... Eguiarte, L. E. (2021). The domestication of

Cucurbita argyrosperma as revealed by the genome of its wild relative. Horticulture Research, 8, 109. doi: https://doi.org/10.1038/s41438-021-00544-9

Benalia, M., Djeridane, A., Gourine, N., Nia, S., Ajandouz, E., & Yousfi, M. (2015). Fatty acid profile, tocopherols content and antioxidant activity of algerian pumpkin seeds oil (Cucurbita pepo L.). Mediterranean Journal of Nutrition and Metabolism, 8(1), 9–25. doi: https://doi.org/10.3233/MNM-140023

Beneito, C. M., Moreno, G. D., García, R. F., Bouza, M., Gilbert, L. B., & Molina, D. A. (2020). Direct analysis of olive oil and other vegetable oils by mass spectrometry: a review. TrAC Trends in Analytical Chemistry, 132, 116046. doi: https://doi.org/10.1016/j.trac.2020.116046

Bouazzaoui, N., & Mulengi, J. K. (2018). Fatty acids and mineral composition of melon (Cucumis melo) and pumpkin (Cucurbita moschata) seeds. Journal of Herbs, Spices & Medicinal Plants, 24(4), 315–322. doi: https://doi.org/10.1080/10496475.2018.1485125

Cañigueral, S., Frommenwiler, D., Reich, E., & Vila, R. (2018). High performance thin-layer chromatography (HPTLC) in the quality control of herbal products. In D. Muñoz-Torrero, Y. Cajal, & J. Llobet (Eds.), Recent advances in pharmaceutical sciences VIII (pp. 119–136). Kerala, India: Research Signpost. Retrieved from http://hdl.handle.net/2445/128014

Cherif, A. O., Leveque, N., Messaouda, M. B., Kallel, H., Tchapla, A., & Moussa, F. (2014). NARP-HPLC/MS5 and silver cationization fingerprinting of triacylglycerols in wild and cultivar Tunisian peanut kernels. LWT-Food Science and Technology, 57(1), 236–242. doi: https://doi.org/10.1016/j.lwt.2014.01.031

Contreras-Gallegos, E., Domínguez-Pacheco, F. A., HernándezAguilar, C., Salazar-Montoya, J. A., Ramos-Ramírez, E. G., & Cruz-Orea, A. (2017). Calor específico de los aceites vegetales en función de la temperatura obtenido por calorimetría de barrido adiabático. Revista de Análisis Térmico y Calorimetría, 128(1), 523–531. doi: https://doi.org/10.1007/s10973-016-5864-1

Cossignani, L., Pollini, L., & Blasi, F. (2019). Invited review: Authentication of milk by direct and indirect analysis of triacylglycerol molecular species. Journal of Dairy Science, 102(7), 5871–5882. doi: https://doi.org/10.3168/jds.2019-16318

Eder, K. (1995). Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B, 671(1-2), 113–131. doi: https://doi.org/10.1016/0378-4347(95)00142-6

Council of Europe, European Pharmacopoeia Commission, European Directorate for the Quality of Medicines & Healthcare. (2010). European Pharmacopoeia (7th ed.). European Pharmacopoeia Commission. (2011). Identification of fatty oils by thin-layer chromatography. France: Ed. Strasbourg. Retrieved from https://file.wuxuwang.com/yaopinbz/EP8.0_1_00072.pdf

Facciotti, D., & Knauf, V. (1998). Triglycerides as products of photosynthesis. Genetic engineering, fatty acid composition and structure of triglycerides. In P. A. Siegenthaler, & N. Murata (Eds.), Lipids in photosynthesis: structure, function and genetics (pp. 225–248). Dordrecht: Springer. doi: https://doi.org/10.1007/0-306-48087-5_12

Fedko, M., Kmiecik, D., Siger, A., Kulczyński, B., Przeor, M., & Kobus-Cisowska, J. (2020). Comparative characteristics of oil composition in seeds of 31 Cucurbita varieties. Journal of Food Measurement and Characterization, 14(2), 894–904. doi: https://doi.org/10.1007/s11694-019-00339-6

Gao, B., Luo, Y., Lu, W., Liu, J., Zhang, Y., & Yu, L. L. (2017). Triacylglycerol compositions of sunflower, corn and soybean oils examined with supercritical CO2 ultraperformance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Food Chemistry, 218, 569–574. doi: https://doi.org/10.1016/j.foodchem.2016.09.099

Lazar Jr., I., & Lazar, I. (2019). GelAnalyzer 19.1 Free desktop app for 1D gel electrophoresis evaluation. Retrieved from http://www.gelanalyzer.com

Hernández, C. F., Hernández, G. M., López, H. Y., López, T. R., Zamudio, F. P., Ochoa, R., E., ... Martínez, V. D. (2020). Changes in oxidative stability, composition and physical characteristics of oil from a non-conventional source before and after processing. Revista Mexicana de Ingeniería Química, 19(3), 1389–1400. doi: https://doi.org/10.24275/rmiq/Alim937

Jakab, A., Héberger, K., & Forgács, E. (2002). Comparative analysis of different plant oils by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, 976(1-2), 255–263. doi: https://doi.org/10.1016/S0021-9673(02)01233-5

Kamal‐Eldin, A., Yousif, G., Iskander, G. M., & Appelqvist, L. Å. (1992). Seed lipids of Sesamum indicum L. and related wild species in Sudan I: Fatty acids and triacylglycerols. Lipid/Fett, 94(7), 254–259. doi: https://doi.org/10.1002/lipi.19920940705

Li, Y., Yuan, F., Wu, Y., Zhang, Y., Gao, B., & Yu, L. (2020). Triacylglycerols and fatty acid compositions of cucumber, tomato, pumpkin, and carrot seed oils by ultra-performance convergence chromatography combined with quadrupole time-of-flight mass spectrometry. Foods, 9(8), 970.

doi: https://doi.org/10.3390/foods9080970

Lira, R. (2001). Cucurbitaceae. In G. C. de Rzedowski & J. Rzedowski (Eds.), Flora del Bajío y de regiones adyacentes. Fascículo 92. Pátzcuaro, Michoacán, México: Instituto de EcologíaCentro Regional del Bajío. Consejo Nacional de Ciencia y Tecnología y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Retrieved from http://www1.inecol.edu.mx/publicaciones/resumeness/FLOBA/Flora%2092.pdf

Lira, R., Eguiarte, L., Montes, S., Zizumbo-Villarreal, D., Marín, P. C. G., & Quesada, M. (2016). Homo sapiensCucurbita interaction in Mesoamerica: Domestication,

Dissemination, and Diversification. In R. Lira, A. Casas, & J. Blancas, (Eds.), Ethnobotany of Mexico (pp. 389–401). New York, USA: Springer. doi: https://doi.org/10.1007/978-1-4614-6669-7_15

Montesano, D., Blasi, F., Simonetti, M. S., Santini, A., & Cossignani, L. (2018). Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods, 7(3), 30. doi: https://doi.org/10.3390/foods7030030

Naik, A. V., & Sellappan, K. (2020). Chromatographic fingerprint of essential oils in plant organs of Annona muricata L. (Annonaceae) using HPTLC. Analytical Chemistry Letters, 10(2), 214–226. doi: https://doi.org/10.1080/22297928.2020.1763197

Neđeral, S., Škevin, D., Kraljić, K., Obranović, M., Papeša, S., & Bataljaku, A. (2012). Chemical composition and oxidative stability of roasted and cold pressed pumpkin seed oils. Journal of the American Oil Chemists’ Society, 89(9), 1763–1770. doi: https://doi.org/10.1007/s11746-012-2076-0

Nehdi, I. (2011). Characteristics, chemical composition and utilisation of Albizia julibrissin seed oil. Industrial Crops and Products, 33(1), 30–34. doi: https://doi.org/10.1016/j.indcrop.2010.08.004

Pagliuca, G., Bozzi, C., Gallo, F. R., Multari, G., Palazzino, G., Porrà, R., & Panusa, A. (2018). Triacylglycerol “hand-shape profile” of Argan oil. Rapid and simple UHPLC-PDA-ESITOF/MS and HPTLC methods to detect counterfeit Argan oil and Argan-oil-based products. Journal of Pharmaceutical and Biomedical Analysis, 150, 121–131. doi: https://doi.org/10.1016/j.jpba.2017.11.059

Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2012). Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37(1), 82–87. doi: https://doi.org/10.1016/j.indcrop.2011.12.004

Ríos-Santos, E., González-Santos, R., Cadena-Iñiguez, J., & Mera-Ovando, L. (2018). Distribución de las especies cultivadas y parientes silvestres de calabaza (CucurbitaL.) en México. AGROProductividad, 11(9), 21–28. Retrieved from https://revista-agroproductividad.org/index.php/agroproductividad/article/view/1210/983

Ruiz, S. C., González, C. A., & Cuadros, R. L., (2015). Triacylglycerols determination by high-temperature gas chromatography in the analysis of vegetable oils and foods: a review of the past 10 years. Critical Reviews in Food Science and Nutrition, 55(11), 1618–1631. doi: https://doi.org/10.1080/10408398.2012.713045

Salas, J. J., Bootello, M. A., & Garcés, R. (2015). Food uses of sunflower oils. In E. Martínez-Force, N. T. Dunford, & J. J. Salas (Eds.), Sunflower: Chemistry, production, processing, and utilization (pp. 441–464). Elsevier. doi: https://doi.org/10.1016/C2015-0-00069-7

Yoshida, H., Shougaki, Y., Hirakawa, Y., Tomiyama, Y., & Mizushina, Y. (2004). Lipid classes, fatty acid composition and triacylglycerol molecular species in the kernels of pumpkin (Cucurbita spp.) seeds. Journal of the Science of Food and Agriculture, 84(2), 158–163. doi: https://doi.org/10.1002/jsfa.1623

Zeb, A. (2012). Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry. Chemistry and Physics of Lipids, 165(5), 608–614. doi: https://doi.org/10.1016/j.chemphyslip.2012.03.004

Zeb, A., & Ahmad, S. (2017). Changes in acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation. Frontiers in Chemistry, 5(55), 1–9. doi: https://doi.org/10.3389/fchem.2017.00055

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Autónoma Chapingo