Resumen
Introducción: Más allá del valor comercial de los granos de café, existe interés reciente por el aprovechamiento no maderero y las propiedades medicinales tradicionales de sus hojas.
Objetivo: Determinar la composición fitoquímica, las propiedades antioxidantes y la inhibición del estrés oxidativo de los extractos de hojas de Coffea, obtenidos por asistencia de ultrasonido, como una oportunidad para la producción de bioactivos vegetales.
Materiales y métodos: La composición fitoquímica de 10 extractos de hojas de Coffea arabica L. cv. Catimor 5000 se evaluó de acuerdo con su contenido de fenoles y metilxantinas; su actividad antioxidante in vitro, mediante ensayos de óxido nítrico (ON), capacidad de absorción de radicales de oxígeno (ORAC), poder antioxidante reductor férrico (FRAP) y radicales ABTS (2,2'-azino-bis [3-etilbenzotiazolina-6-ácido sulfónico]); y su efecto en la inhibición del estrés oxidativo inducido, por peróxido de hidrógeno en células humanas de adenocarcinoma de colon (HT[1]29). Los extractos se obtuvieron por asistencia de ultrasonido en diferentes condiciones de amplitud de onda, proporción de solvente y tiempo de extracción.
Resultados y discusión: El contenido de fenoles y cafeína, y la mayor respuesta de inhibición de estrés oxidativo en el modelo HT-29, ensayos ORAC y ON fueron mayores con 60/40 de agua/metanol, 40 % de amplitud y 6 min de tiempo de extracción. Se identificaron por primera vez dos flavanonas en hojas de Coffea: neohesperidina y naringenina. En cuanto a los ácidos fenólicos, se identificaron los ácidos vanílico, shikímico, siríngico, elágico, 2,4,6 trihidroxibenzaldehído, y 2,3 dihidroxibenzoico, no reportados previamente en hojas de café.
Conclusión: La novedosa composición fitoquímica de los extractos bioactivos de las hojas de Coffea por asistencia de ultrasonido es significativa, lo que representa una fuente potencial de nutracéuticos.
Citas
Belayneh, A., & Bussa, N. F. (2014). Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 10(1), 18. doi: https://doi.org/10.1186/1746-4269-10-18
Brum, C. N. F., Melo, E. F., Barquero, L. O. B., Alves, J. D., & ChalfunJúnior, A. (2013). Modifications in the metabolism of carbohydrates in (Coffea arabica L. cv. siriema) seedlings under drought conditions. Coffee Science, 8(2), 140-147. Retrieved from http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/384
Campa, C., Mondolot, L., Rakotondravao, A., Bidel, L. P. R., Gargadennec, A., Couturon, E., La Fisca, P., …Davis, A. P. (2012). A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: Biological implications and uses. Annals of Botany, 110(3), 595-613. doi: https://doi.org/10.1093/aob/mcs119
Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi: https://doi.org/10.1016/j.ultsonch.2016.06.035
Chen, X. (2019). A review on coffee leaves: Phytochemicals, bioactivities and applications. Critical Reviews in Food Science & Nutrition, 59(6), 1008-1025. doi: https://doi.org/10.1080/10408398.2018.1546667
Chen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science, 85(6), 1742-1751. doi: https://doi.org/10.1111/1750-3841.15111
Delaroza, F., Rakocevic, M., Malta, G. B., Bruns, R. E., & Scarminio, I. S. (2014). Spectroscopic and chromatographic fingerprint analysis of composition variations in Coffea arabica leaves subject to different light conditions and plant phenophases. Journal of the Brazilian Chemical Society, 25(11), 1929-1938. doi: https://doi.org/10.5935/0103-5053.20140172
Dhananjaya, B. L., Nataraju, A., Raghavendra Gowda, C. D., Sharat, B. K., & D’Souza, C. J. M. (2009). Vanillic acid as a novel specific inhibitor of snake venom 5′-nucleotidase: A pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry (Moscow), 74, 1315-1319. doi: https://doi.org/10.1134/s0006297909120037
Díaz-Rivas, J. O., González-Laredo, R. F., Chávez-Simental, J. A., Montoya-Ayón, J. B., Moreno-Jiménez, M. R., Gallegos-Infante, J. A., & Rocha-Guzman, N. E. (2018). Comprehensive characterization of extractable phenolic compounds by UPLC-PDA-ESI-QqQ of Buddleja scordioides plants elicited with salicylic acid. Journal of Chemistry, ID 4536970. doi: https://doi.org/10.1155/2018/4536970
Ebkatan, S. S., Li, X. Q., Ghorbani, M., Azadi, B., & Kubow, S. (2018). Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. International Journal of Molecular Sciences, 19(3), 723. doi: https://doi.org/10.3390/ijms19030723
Guglielmetti, A., D'Ignoti, V., Ghirardello, D., Belviso, S., & Zeppa, G. (2017). Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. Italian Journal of Food Science, 29(3), 409-423. doi: https://doi.org/10.14674/IJFS-727
Heredia-Díaz, Y., García-Díaz, J., López-González, T., ChilNuñez, I., Arias-Ramos, D., Escalona-Arranza, J. C.,
Gonzalez-Fernandez, R., …Martinez-Figueredo, Y. (2018). An ethnobotanical survey of medicinal plants used by inhabitants of Holguín, Eastern Region, Cuba. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 17(2), 160-196. Retrieved from https://blacpma.ms-editions.cl/index.php/blacpma/article/view/41
Hossain, M. B., Brunton, N. P., Patras, A., Tiwari, B., O’Donnell, C., Martin-Diana, A. B., & Barry-Ryan, C. (2012). Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics and Sonochemistry, 19(3), 582-590. doi: https://doi.org/10.1016/j.ultsonch.2011.11.001
Huck, C., Guggenbichler, W., & Bonn, G. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to highperformance liquid chromatography (HPLC) coupled to
mass spectrometry. Analytica Chimica Acta, 538(1-2), 195-203. doi: https://doi.org/10.1016/j.aca.2005.01.064
Hwang, S. J., Kim, Y. W., Park, Y., Lee, H. J., & Kim, K. W. (2014). Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research, 63(1), 81-90. doi: https://doi.org/10.1007/s00011-013-0674-4
Joshi, R., Kulkarni, Y. A., & Wairkar, S. (2018). Pharmacokinetic, pharmacodynamic and formulations aspects of naringenin: An update. Life Sciences, 215, 43-56. doi: https://doi.org/10.1016/j.lfs.2018.10.066
Kim, M. C., Kim, S. J., Kim, D. S., Jeon, Y. D., Park, S. J., Lee, H. S., Um, J. Y., & Hong, S. H. (2011). Vanillic acid inhibits inflammatory mediators by suppressing NFκB in lipopolysaccharide-stimulated mouse peritoneal
macrophages. Immunopharmacology and Immunotoxicology, 33(3), 525-532. doi: https://doi.org/10.3109/08923973.2010.547500
Minitab Inc. (2009). Minitab® Statistical Software, version 7. State College, PA, USA: Author.Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., & Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology and Biochemistry, 70(1), 178-192. doi: https://doi.org/10.1271/bbb.70.178
Ong, K. W., Hsu, A., & Tan, B. K. H. (2013). Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology, 85(9), 1341-1351. doi: https://doi.org/10.1016/j.bcp.2013.02.008
Patay, É. B., Bencsik, T., & Papp, N. (2016). Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pacific Journal of Tropical Medicine, 9(12), 1127-1135. doi: https://doi.org/10.1016/j.apjtm.2016.11.008
Petrucci, R., Zollo, G., Curulli, A., & Marrosu, G. (2018). A new insight into the oxidative mechanism of caffeine and related methylxanthines in aprotic medium: May caffeine be really considered as an antioxidant? Biochimica et Biophysica Acta (BBA)-General Subjects, 1862(8), 1781-1789. doi: https://doi.org/10.1016/j.apjtm.2016.11.008
Ratanamarno, S., & Surbkar, S. (2017). Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea. Maejo International Journal of Science and Technology, 11(3), 211-218. Retrieved from http://www.mijst.mju.ac.th/vol11/211-218.pdf
Rocha, L. W., Bonet, I. J. M., Tambeli, C. H., de-Faria, F. M., & Parada, C. A. (2018). Local administration of mangiferin prevents experimental inflammatory mechanical hyperalgesia through CINC-1/epinephrine/PKA pathway and TNF-α inhibition. European Journal of Pharmacology, 830, 87-94. doi: https://doi.org/10.1016/j.ejphar.2018.04.030
Rosales-Villarreal, M. C., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., Reynoso-Camacho, R., Pérez-Ramírez, I. F., & Gonzalez-Laredo, R. F. (2019). Significance of bioactive compounds, therapeutic and agronomic potential of non-commercial parts of the Coffea tree. Biotecnia, 21(3), 143-153. doi: https://doi.org/10.18633/biotecnia.v21i3.1046
Setiawan, V. W., Wilkens, L. R., Lu, S. C., Hernandez, B. Y., Le Marchand, L., & Henderson, B. E. (2015). Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology, 148(1), 118-125. doi: https://doi.org/10.1053/j.gastro.2014.10.005
Shi, H., Shi, A., Dong, L., Lu, X., Wang, Y., Zhao, J., Dai, F., & Guo, X. (2016). Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative
stress. Clinical Nutrition, 35(6), 1366-1373. doi: https://doi.org/10.1016/j.clnu.2016.03.002
Systat Software Inc. (2014). SigmaPlot® version 12. Exact graphs for exact science. San Jose, CA, USA: Author.
Tabuti, J. R. S., Kukunda, C. B., & Waako, P. J. (2010). Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. Journal of Ethnopharmacology, 127(1), 130-136. doi: https://doi.org/10.1016/j.jep.2009.09.035
Tai, A., Sawano, T., & Ito, H. (2012). Antioxidant properties of vanillic acid esters in multiple antioxidant assays. Bioscience, Biotechnology and Biochemistry, 76(2), 314–318. doi: https://doi.org/10.1271/bbb.110700
Yamagata, K., Izawa, Y., Onodera, D., & Tagami, M. (2018). Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Molecular and Cellular Biochemistry, 441(1-2), 9-19. doi: https://doi.org/10.1007/s11010-017-3171-1
Zheng, X., & Ashihara, H. (2004). Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Science, 166(3), 807-813. doi: https://doi.org/10.1016/j.plantsci.2003.11.024
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente