Revista Chapingo Serie Ciencias Forestales y del Ambiente
Antioxidant phytochemicals and modulation of oxidative stress from infusions and ultrasound-assisted extractions of Coffea leaves
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

phytochemical composition
bioactive extracts
flavonoids
mangiferin
phenolic acids

How to Cite

Rosales-Villarreal, M. C., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., Reynoso-Camacho, R., Pérez-Ramírez, I. F., … González-Laredo, R. F. (2021). Antioxidant phytochemicals and modulation of oxidative stress from infusions and ultrasound-assisted extractions of Coffea leaves. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(1), 119–137. https://doi.org/10.5154/r.rchscfa.2021.05.026

Abstract

Introduction: Beyond the commercial value of coffee grains there is recent interest for the non-timber benefit and traditional medicinal properties of the Coffea tree leaves.
Objective: To determine the phytochemical composition, antioxidant properties and inhibition of oxidative stress by extracts from Coffea leaves obtained by ultrasound assistance as an opportunity for production of plant bioactives.
Material and methods: The phytochemical composition of ten extracts of Coffea arabica L. leaves cv. Catimor 5000 was evaluated in their phenolic and methylxanthines contents as well their antioxidant activity in vitro through nitric oxide (NO), absorbance capacity of oxygen radicals (ORAC), ferric reducing antioxidant power (FRAP), and radical ABTS (2,2'-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid]) assays, and their effect on inhibition of oxidative stress induced by hydrogen peroxide in human colon adenocarcinoma cells (HT-29). Extracts were obtained by ultrasound assistance under different conditions (wave amplitude, solvent ratio, and extraction time).
Results and discussion: The higher phenolics and caffeine contents, as well the greater oxidative stress inhibition response in the HT-29 model, ORAC and NO assays were obtained at 60/40 water/methanol, 40 % amplitude and 6 min of extraction time. In this work, identification of two flavanones have been reported for the first time in Coffea leaves: neohesperidin and naringenin. Regarding phenolic acids, it was detected and identified a group of hydroxybenzoic acids not previously reported in coffee leaves, such as vanillic, shikimic, syringic, and ellagic acids, along with 2,4,6 trihydroxybenzaldehyde and 2,3 dihydroxybenzoic acid.
Conclusion: The novel phytochemical composition of bioactive extracts from Coffee leaves by ultrasound assistance is significant, representing a potential source of food nutraceuticals.

https://doi.org/10.5154/r.rchscfa.2021.05.026
PDF

References

Belayneh, A., & Bussa, N. F. (2014). Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 10(1), 18. doi: https://doi.org/10.1186/1746-4269-10-18

Brum, C. N. F., Melo, E. F., Barquero, L. O. B., Alves, J. D., & ChalfunJúnior, A. (2013). Modifications in the metabolism of carbohydrates in (Coffea arabica L. cv. siriema) seedlings under drought conditions. Coffee Science, 8(2), 140-147. Retrieved from http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/384

Campa, C., Mondolot, L., Rakotondravao, A., Bidel, L. P. R., Gargadennec, A., Couturon, E., La Fisca, P., …Davis, A. P. (2012). A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: Biological implications and uses. Annals of Botany, 110(3), 595-613. doi: https://doi.org/10.1093/aob/mcs119

Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. doi: https://doi.org/10.1016/j.ultsonch.2016.06.035

Chen, X. (2019). A review on coffee leaves: Phytochemicals, bioactivities and applications. Critical Reviews in Food Science & Nutrition, 59(6), 1008-1025. doi: https://doi.org/10.1080/10408398.2018.1546667

Chen, X., Ding, J., Ji, D., He, S., & Ma, H. (2020). Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. Journal of Food Science, 85(6), 1742-1751. doi: https://doi.org/10.1111/1750-3841.15111

Delaroza, F., Rakocevic, M., Malta, G. B., Bruns, R. E., & Scarminio, I. S. (2014). Spectroscopic and chromatographic fingerprint analysis of composition variations in Coffea arabica leaves subject to different light conditions and plant phenophases. Journal of the Brazilian Chemical Society, 25(11), 1929-1938. doi: https://doi.org/10.5935/0103-5053.20140172

Dhananjaya, B. L., Nataraju, A., Raghavendra Gowda, C. D., Sharat, B. K., & D’Souza, C. J. M. (2009). Vanillic acid as a novel specific inhibitor of snake venom 5′-nucleotidase: A pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry (Moscow), 74, 1315-1319. doi: https://doi.org/10.1134/s0006297909120037

Díaz-Rivas, J. O., González-Laredo, R. F., Chávez-Simental, J. A., Montoya-Ayón, J. B., Moreno-Jiménez, M. R., Gallegos-Infante, J. A., & Rocha-Guzman, N. E. (2018). Comprehensive characterization of extractable phenolic compounds by UPLC-PDA-ESI-QqQ of Buddleja scordioides plants elicited with salicylic acid. Journal of Chemistry, ID 4536970. doi: https://doi.org/10.1155/2018/4536970

Ebkatan, S. S., Li, X. Q., Ghorbani, M., Azadi, B., & Kubow, S. (2018). Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. International Journal of Molecular Sciences, 19(3), 723. doi: https://doi.org/10.3390/ijms19030723

Guglielmetti, A., D'Ignoti, V., Ghirardello, D., Belviso, S., & Zeppa, G. (2017). Optimisation of ultrasound and microwave-assisted extraction of caffeoylquinic acids and caffeine from coffee silverskin using response surface methodology. Italian Journal of Food Science, 29(3), 409-423. doi: https://doi.org/10.14674/IJFS-727

Heredia-Díaz, Y., García-Díaz, J., López-González, T., ChilNuñez, I., Arias-Ramos, D., Escalona-Arranza, J. C.,

Gonzalez-Fernandez, R., …Martinez-Figueredo, Y. (2018). An ethnobotanical survey of medicinal plants used by inhabitants of Holguín, Eastern Region, Cuba. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 17(2), 160-196. Retrieved from https://blacpma.ms-editions.cl/index.php/blacpma/article/view/41

Hossain, M. B., Brunton, N. P., Patras, A., Tiwari, B., O’Donnell, C., Martin-Diana, A. B., & Barry-Ryan, C. (2012). Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics and Sonochemistry, 19(3), 582-590. doi: https://doi.org/10.1016/j.ultsonch.2011.11.001

Huck, C., Guggenbichler, W., & Bonn, G. (2005). Analysis of caffeine, theobromine and theophylline in coffee by near infrared spectroscopy (NIRS) compared to highperformance liquid chromatography (HPLC) coupled to

mass spectrometry. Analytica Chimica Acta, 538(1-2), 195-203. doi: https://doi.org/10.1016/j.aca.2005.01.064

Hwang, S. J., Kim, Y. W., Park, Y., Lee, H. J., & Kim, K. W. (2014). Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research, 63(1), 81-90. doi: https://doi.org/10.1007/s00011-013-0674-4

Joshi, R., Kulkarni, Y. A., & Wairkar, S. (2018). Pharmacokinetic, pharmacodynamic and formulations aspects of naringenin: An update. Life Sciences, 215, 43-56. doi: https://doi.org/10.1016/j.lfs.2018.10.066

Kim, M. C., Kim, S. J., Kim, D. S., Jeon, Y. D., Park, S. J., Lee, H. S., Um, J. Y., & Hong, S. H. (2011). Vanillic acid inhibits inflammatory mediators by suppressing NFκB in lipopolysaccharide-stimulated mouse peritoneal

macrophages. Immunopharmacology and Immunotoxicology, 33(3), 525-532. doi: https://doi.org/10.3109/08923973.2010.547500

Minitab Inc. (2009). Minitab® Statistical Software, version 7. State College, PA, USA: Author.Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., & Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology and Biochemistry, 70(1), 178-192. doi: https://doi.org/10.1271/bbb.70.178

Ong, K. W., Hsu, A., & Tan, B. K. H. (2013). Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology, 85(9), 1341-1351. doi: https://doi.org/10.1016/j.bcp.2013.02.008

Patay, É. B., Bencsik, T., & Papp, N. (2016). Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pacific Journal of Tropical Medicine, 9(12), 1127-1135. doi: https://doi.org/10.1016/j.apjtm.2016.11.008

Petrucci, R., Zollo, G., Curulli, A., & Marrosu, G. (2018). A new insight into the oxidative mechanism of caffeine and related methylxanthines in aprotic medium: May caffeine be really considered as an antioxidant? Biochimica et Biophysica Acta (BBA)-General Subjects, 1862(8), 1781-1789. doi: https://doi.org/10.1016/j.apjtm.2016.11.008

Ratanamarno, S., & Surbkar, S. (2017). Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea. Maejo International Journal of Science and Technology, 11(3), 211-218. Retrieved from http://www.mijst.mju.ac.th/vol11/211-218.pdf

Rocha, L. W., Bonet, I. J. M., Tambeli, C. H., de-Faria, F. M., & Parada, C. A. (2018). Local administration of mangiferin prevents experimental inflammatory mechanical hyperalgesia through CINC-1/epinephrine/PKA pathway and TNF-α inhibition. European Journal of Pharmacology, 830, 87-94. doi: https://doi.org/10.1016/j.ejphar.2018.04.030

Rosales-Villarreal, M. C., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., Reynoso-Camacho, R., Pérez-Ramírez, I. F., & Gonzalez-Laredo, R. F. (2019). Significance of bioactive compounds, therapeutic and agronomic potential of non-commercial parts of the Coffea tree. Biotecnia, 21(3), 143-153. doi: https://doi.org/10.18633/biotecnia.v21i3.1046

Setiawan, V. W., Wilkens, L. R., Lu, S. C., Hernandez, B. Y., Le Marchand, L., & Henderson, B. E. (2015). Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterology, 148(1), 118-125. doi: https://doi.org/10.1053/j.gastro.2014.10.005

Shi, H., Shi, A., Dong, L., Lu, X., Wang, Y., Zhao, J., Dai, F., & Guo, X. (2016). Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative

stress. Clinical Nutrition, 35(6), 1366-1373. doi: https://doi.org/10.1016/j.clnu.2016.03.002

Systat Software Inc. (2014). SigmaPlot® version 12. Exact graphs for exact science. San Jose, CA, USA: Author.

Tabuti, J. R. S., Kukunda, C. B., & Waako, P. J. (2010). Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda. Journal of Ethnopharmacology, 127(1), 130-136. doi: https://doi.org/10.1016/j.jep.2009.09.035

Tai, A., Sawano, T., & Ito, H. (2012). Antioxidant properties of vanillic acid esters in multiple antioxidant assays. Bioscience, Biotechnology and Biochemistry, 76(2), 314–318. doi: https://doi.org/10.1271/bbb.110700

Yamagata, K., Izawa, Y., Onodera, D., & Tagami, M. (2018). Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Molecular and Cellular Biochemistry, 441(1-2), 9-19. doi: https://doi.org/10.1007/s11010-017-3171-1

Zheng, X., & Ashihara, H. (2004). Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Science, 166(3), 807-813. doi: https://doi.org/10.1016/j.plantsci.2003.11.024

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Revista Chapingo Serie Ciencias Forestales y del Ambiente