Revista Chapingo Serie Ciencias Forestales y del Ambiente
Minimum sample size for fitting compatible taper-volume functions for three pine species in Chihuahua
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

taper function
stem volume
merchantable volume
Pinus arizonica
Pinus durangensis
Pinus engelmannii

How to Cite

Villela-Suárez, J. M. ., Aguirre-Calderón, O. A., Treviño-Garza, E. J., González-Tagle, G.-T., Yerena-Yamallel, I., & Vargas-Larreta, B. (2020). Minimum sample size for fitting compatible taper-volume functions for three pine species in Chihuahua. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 143–163. https://doi.org/10.5154/r.rchscfa.2020.04.031

##article.highlights##

  • The minimum number of trees calculated ranged from 53 (Pinus durangensis) to 88 (P. engelmannii).
  • The minimum sample size depends on the species and geographical region.
  • A large sample does not guarantee better fitting of a profile function than a smaller sample.
  • If the sample represents the population structure, the function estimates the volume accurately.
  • The sample size should ensure the degree of accuracy set for the model.

Abstract

Introduction: The choice of sample size is an important decision in the development of volume models and taper functions.
Objective: To calculate the minimum sample size required for fitting compatible taper-volume functions for Pinus arizonica Engelm., P. durangensis Martínez and P. engelmannii Carr. in Chihuahua.
Materials and methods: The methodology was divided into three phases: (i) fitting of a linear regression model to the diameter-height data of 50 trees of each species in the three forest regions; (ii) calculation of the minimum sample size required, and (iii) comparison of the goodness of fit of the taper-volume function using both sample sizes.
Results and discussion: The minimum number of trees calculated ranged from 53 (Pinus durangensis) to 88 (P. engelmannii) and it is located in the interval reported in studies carried out to estimate the optimal sample size for the development of taper functions. No significant differences were observed in the goodness of fit (α = 0.05) in terms of the R 2 and the root mean square error, using the full sample size and the calculated minimum sample size; no significant effect was observed in the stem volume estimates.
Conclusion: The use of small samples in the fit of taper-volume models generates accurate estimates if adequate representation of the study population is ensured.

https://doi.org/10.5154/r.rchscfa.2020.04.031
PDF

References

Barrio-Anta, M., Diéguez-Aranda, U., Castedo-Dorado, F., Álvarez-González, J. G., & von Gadow, K. (2007). Merchantable volume system for pedunculate oak in northwestern Spain. Annals of Forest Science, 64(5), 511‒520. doi: https://doi.org/ 10.1051/forest:2007028

Bi, H. (2000). Trigonometric variable-form taper equations for Australian eucalyptus. Forest Science, 46(3), 397‒409. doi: https://doi.org/ 10.1093/forestscience/46.3.397

Bloomberg, M., Mason, E. G., Jarvis, P., & Sedcole, R. (2008). Predicting seedling biomass of radiate pine from allometric variables. New Forests, 36, 103‒114. doi: https://doi.org/ 10.1007/s11056-008-9086-7

Burkhart, H. E., & Tomé, M. (2012). Modeling forest trees and stands. Dordrecht, The Netherlands: Springer.

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2014). La biodiversidad en Chihuahua: Estudio de estado. México: Author. Retrieved from https://bpo.sep.gob.mx/#/recurso/498/document/1

Cormier, K. L., Reich, R. M., Czaplewski, R. L., & Bechtold, W. A. (1992). Evaluation of weighted regression and sample size in developing a taper model for loblolly pine. Forest Ecology and Management, 53, 65‒76. doi: https://doi.org/ 10.1016/0378-1127(92)90034-7

Corral, R. S., Návar, Ch. J., & Fernández, S. F. (1999). Ajustes de funciones de ahusamiento a los perfiles fustales de cinco pináceas de la región de El Salto, Durango. Madera y Bosques, 5(2), 53‒65. doi: https://doi.org/ 10.21829/myb.1999.521347

Corral-Rivas, J. J., Diéguez-Aranda, U., Corral-Rivas, S., & Castedo, D. F. (2007). A merchantable volume system for major pine species in El Salto, Durango (Mexico). Forest Ecology and Management, 238(1-3), 118‒129. doi: https://doi.org/ 10.1016/j.foreco.2006.09.074

Crecente-Campo, F., Rojo-Alboreca, A., & Diéguez-Aranda, U. A. (2009). A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of Forest Science, 66(8), 808. doi: https://doi.org/ 10.1051/forest/2009078

Demaerschalk, J. P., & Kozak, A. (1974). Suggestions and criteria for more effective regression sampling. Canadian Journal of Forest Research, 4(3), 341‒348. doi: https://doi.org/ 10.1139/x74-051

Diéguez-Aranda, U., Castedo-Dorado, F., Álvarez-González, J. G., & Rojo, A. (2006). Compatible taper function for Scots pine plantations in northwestern Spain. Canadian Journal of Forest Research, 36(5), 1190‒1205. doi: https://doi.org/ 10.1139/x06-008

Fang, Z., Borders, B. E., & Bailey, R. L. (2000). Compatible volume-taper models for Loblolly and Slash pine based on a system with segmented-stem form factors. Forest Science, 46(1), 1‒12. doi: https://doi.org/ 10.1093/forestscience/46.1.1

García-Espinoza, G. G., Aguirre-Calderón, O. A., Vargas-Larreta, B., Martínez-Ángel, L., García-Magaña, J. J., & Hernández-Ramos, J. (2019). Compatible taper and volume system for Pinus pseudostrobus Lindl. in Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Agrociencia, 53(1), 115‒131. Retrieved from https://www.researchgate.net/publication/331478269_Compatible_taper_and_volume_system_for_pinus_pseudostrobus_Lindl_In_Nuevo_San_Juan_Parangaricutiro_Michoacan_Mexico

Gezan, S. A., Moreno, M. P., & Ortega, A. (2009). Modelos fustales para renovales de roble, raulí y coigüe en Chile. Bosque, 30(2), 61‒69. doi: https://doi.org/ 10.4067/S0717-92002009000200001

Heidarsson, L., & Pukkala, T. (2011). Taper functions for lodgepole pine (Pinus contorta) and siberian larch (Larix sibirica) in Iceland. Icelandic Agricultural Sciences, 24, 3‒11. Retrieved from https://ias.is/wp-content/uploads/Icelandic_Agricultural_Sciences_24_2011/Taper-functions-for-lodgepole-pine-Pinus-contorta.pdf

Jiménez, P. J., Aguirre, C. O., Treviño, G. E., & Domínguez, C. A. (1998). Desarrollo de un sistema matemático para la elaboración de tarifas volumétricas en especies arbóreas. Madera y Bosques, 4(2), 67‒77. doi: https://doi.org/ 10.21829/myb.1998.421360

Kitikidou, K. (2010). An alternative sample size estimation for optimizing taper equations fitting. Operational Research, 10(2), 199‒208. doi: https://doi.org/ 10.1007/s12351-009-0057-3

Kitikidou, K., & Chatzilazarou, G. (2008). Estimating the sample size for fitting taper equations. Journal of Forest Science, 54(4), 176‒182. doi: https://doi.org/ 10.17221/789-JFS

Kozak, A. (1988). A variable-exponent taper equation. Canadian Journal of Forest Research, 18(11), 1363‒1368. doi: https://doi.org/ 10.1139/x88-213

Lee, W. K., Seo, J. H., Son, Y. M., Lee, K. H., & von Gadow, K. (2003). Modelling stem profiles for Pinus densiflora in Korea. Forest Ecology and Management, 172, 69‒77. doi: https://doi.org/ 10.1016/S0378-1127(02)00139-1

Levene, H. (1960). Robust tests for equality of variances. In I. Olkin (Ed.), Contributions to probability and statistics (pp. 278–292). Palo Alto, California, USA: Stanford University Press.

Li, R., & Weiskittel, A. R. (2010). Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Annals of Forest Science, 67, 302. doi: https://doi.org/ 10.1051/forest/2009109

López, M. A., Barrios, A., & Trincado, G. (2015). Taper models with an autoregressive error structure for Eucalyptus tereticornis plantations in Colombia. Madera y Bosques, 21(2), 73‒88. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-04712015000200005

López, M. J., Cruz, C. F., Nájera, L. J., & Hernández, F. J. (2015). Modelos de ahusamiento y volumen comercial para Pinus oocarpa y P. douglasiana en la región de Pueblo Nuevo, Durango. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 64, 47‒53. Retrieved from https://investigacion.uaa.mx/RevistaIyC/archivo/revista64/Articulo%207.pdf

López-Martínez, J. O., Vargas-Larreta, B., Aguirre-Calderón, O., Aguirre-Calderón, C., Macario-Mendoza, P., Martínez-Salvador, M., & Álvarez-González, J. G. (2019). Compatible taper-volume systems for major tropical species in Mexico. Forestry: An International Journal of Forest Research, 93(1), 56–74. doi: https://doi.org/ 10.1093/forestry/cpz033

Návar, J. J., & Domínguez, C. A. (1997). Ajuste de modelos de volumen y funciones que describen el perfil diamétrico de cuatro especies de pino plantadas en el nordeste de México. Investigación Agraria: Sistemas y Recursos Forestales, 6(1), 147‒162. Retrieved from https://recyt.fecyt.es/index.php/IA/article/view/4961

Navarro, J., Borja, A., Musálem, M. A., Ramírez, H., & Granados, D. (2002). Ecuaciones y tablas de volúmenes comerciales con y sin corteza para Peltogyne mexicana Martínez, una especie amenazada del estado de Guerrero, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 8(2), 133‒139. Retrieved from https://www.redalyc.org/articulo.oa?id=62980207

Novo, N., Rojo, A., & Álvarez, G. J. (2003). Funciones de perfil del tronco para Pinus sylvestris L. en Galicia. Investigación Agraria: Sistemas y Recursos Forestales, 12(1), 123‒136. Retrieved from http://revistas.inia.es/index.php/fs/article/view/792/789

Pompa-García, M., Corral-Rivas, J. J., Díaz-Vázquez, M. A., & Martínez-Salvador, M. (2009). Función de ahusamiento y volumen compatible para Pinus arizonica Engelm. en el suroeste de Chihuahua. Revista Ciencia Forestal en México, 34(105), 119‒136. Retrieved from https://cienciasforestales.inifap.gob.mx/editorial/index.php/forestales/article/view/695/1778

Pompa-García, M., Hernández, C., Prieto-Ruiz, J. A., & Dávalos, S. R. (2009). Modelación del volumen fustal de Pinus durangensis en Guachochi, Chihuahua, México. Madera y Bosques, 15(1), 61‒73. doi: https://doi.org/ 10.21829/myb.2009.1511197

Rojo, A., Perales, X., Sánchez-Rodríguez, F., Álvarez-González, J. G., & von Gadow, K. (2005). Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). European Journal of Forest Research, 124(3), 177‒186. doi: https://doi.org/ 10.1007/s10342-005-0066-6

Saarinen, N., Kankare, V., Pyörälä, J., Yrttimaa, T., Liang, X., Wulder, M. A., …Vastaranta, M. (2019). Assessing the effects of sample size on parametrizing a taper curve equation and the resultant stem-volume estimates. Forests, 10(10), 848. doi: https://doi.org/ 10.3390/f10100848

SAS Institute Inc. (2004). SAS/ETS 9.1 User’s Guide. Cary, NC: SAS Institute Inc.

Sharma, M., & Zhang, S. Y. (2004). Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. Forest Ecology and Management, 198, 39‒53. doi: https://doi.org/ 10.1016/j.foreco.2004.03.035

Silva-González, E., Nava-Moreno, M. A., Hernández, F. J., & Colín, J. G. (2018). Funciones compatibles de ahusamiento-volumen para tres especies de Pinus en la Unidad de Manejo Forestal 0808 del estado de Chihuahua. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 26(73), 58‒67. Retrieved from https://investigacion.uaa.mx/RevistaIyC/archivo/revista73/Articulo%207.pdf

Subedi, N., Sharma, M., & Parton, J. (2011). Effects of sample size and tree selection criteria on the performance of taper equations. Scandinavian Journal of Forest Research, 26, 555‒567. doi: https://doi.org/ 10.1080/02827581.2011.583677

Tamarit-Urías, J. C., De los Santos-Posadas, H. M., Aldrete, A., Valdez-Lazalde, J. R., Ramírez-Maldonado, H., & Guerra-De la Cruz, V. (2014). Sistema de cubicación para árboles individuales de Tectona grandis L. f. mediante funciones compatibles de ahusamiento-volumen. Revista Mexicana de Ciencias Forestales, 5(21), 58‒75. doi: https://doi.org/ 10.29298/rmcf.v5i21.358

Tapia, J., & Návar, J. (2011). Ajuste de modelos de volumen y funciones de ahusamiento para Pinus pseudostrobus Lindl. en bosques de la Sierra Madre Oriental de Nuevo León, México. Foresta Veracruzana, 13(2), 19‒28. Retrieved from https://www.redalyc.org/pdf/497/49721457004.pdf

Tlaxcala-Méndez, R. M., De los Santos-Posadas, H. M., Hernández-de la Rosa, P., & López-Ayala, J. L. (2015). Variación del factor de forma y el ahusamiento en procedencias de cedro rojo (Cedrela odorata L.). Agrociencia, 50(1), 89‒105. Retrieved from https://www.colpos.mx/agrocien/Bimestral/2016/ene-feb/art-7.pdf

Torres, R. J., & Magaña, T. O. (2001). Evaluación de plantaciones forestales. México: Noriega Editores.

Uranga-Valencia, L. P., De los Santos-Posadas, H. M., Valdez-Lazalde, J. R., López-Upton, J., & Navarro-Garza, H. (2015). Volumen total y ahusamiento para Pinus patula Schiede ex Schltdl. et Cham. en tres condiciones de bosque. Agrociencia, 49(7), 787‒801. Retrieved from https://www.colpos.mx/agrocien/Bimestral/2015/oct-nov/art-7.pdf

Vargas-Larreta, B., Corral-Rivas, J. J., Aguirre-Calderón, O. A., López-Martínez, J. O., Santos-Posadas, H. M., Zamudio-Sánchez, F. J., & Aguirre-Calderón, C. G. (2017). SiBiFor: Sistema Biométrico Forestal para el manejo de los bosques de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(3), 437‒455. doi: https://doi.org/ 10.5154/r.rchscfa.2017.06.040

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente