Revista Chapingo Serie Ciencias Forestales y del Ambiente
Impactos del manejo forestal sobre las propiedades de los suelos: un tema de investigación fundamental para México
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Carbono
disponibilidad de nutrientes
fertilización
bosques templados
comunidades microbianas

Cómo citar

Valladares-Samperio, K., & Galicia-Sarmiento, L. (2020). Impactos del manejo forestal sobre las propiedades de los suelos: un tema de investigación fundamental para México. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 33–52. https://doi.org/10.5154/r.rchscfa.2019.11.088

##article.highlights##

  • El manejo forestal modifica la cantidad y composición de materia orgánica y la actividad microbiana.
  • El manejo intensivo causa mayor desequilibrio en los procesos microbianos que los métodos selectivos.
  • El manejo intensivo daña la estructura, las reservas de nutrientes y comunidades microbianas del suelo.
  • Las afectaciones dependen de la intensidad de biomasa extraída, las condiciones ambientales y del sitio.

Resumen

Introducción: El incremento en la intensidad de cosecha de madera influye negativamente en las funciones ecosistémicas de los suelos en los bosques templados y boreales.
Objetivo: Conocer los impactos de los métodos de manejo forestal intensivos y extensivos sobre las propiedades físicas, químicas y biológicas de los suelos, y sus consecuencias en los procesos de disponibilidad y estabilización de nutrientes en los bosques templados y boreales.
Resultados y discusión: Los métodos de manejo forestal intensivo pueden generar mayor desequilibrio en los procesos de disponibilidad y estabilización de nutrientes, comparados con los métodos selectivos. El impacto se refleja en el deterioro de la estructura del suelo y en la disminución de reservas de nutrientes y comunidades microbianas. Estos daños afectan la fertilidad y el funcionamiento del suelo, disminuyendo la productividad a largo plazo. Las afectaciones dependen de la intensidad de biomasa extraída, condiciones ambientales y preparación del sitio. Lo anterior hace evidente la necesidad del monitoreo del manejo forestal y su impacto en la ecología del suelo en los bosques templados, que mantenga la productividad a largo plazo y garantice la disponibilidad de los volúmenes de madera.
Conclusión: En México, el impacto del manejo forestal ha sido escasamente analizado y es indispensable comprender los cambios funcionales de los procesos que determinan la fertilidad del suelo y la productividad de los bosques.

https://doi.org/10.5154/r.rchscfa.2019.11.088
PDF

Citas

Achat, D. L., Augusto, L., Bakker, M. R., Gallet-Budynek, A., & Morel, C. (2012). Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties. Soil Biology and Biochemistry, 44(1), 39–48. doi: https://doi.org/10.1016/j.soilbio.2011.09.007

Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74–80. doi: https://doi.org/10.1016/j.soilbio.2014.12.017

Ågren, G. I., Hyvönen, R., & Nilsson, T. (2008). Are Swedish forest soils sinks or sources for CO2 - Model analyses based on forest inventory data. Biogeochemistry, 44(1), 39–48. doi: https://doi.org/10.1007/s10533-007-9151-x

Laurent, A., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., & Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2), 444–466. doi: https://doi.org/10.1111/brv.12119

Ball, P. N., MacKenzie, M. D., DeLuca, T. H., & Montana, W. E. H. (2010). Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 39(4), 1243–1253. doi: https://doi.org/10.2134/jeq2009.0082

Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511. doi: https://doi.org/10.1038/nature13855

Boiffin, J., & Munson, A. D. (2013). Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere, 4(5), 1–20. doi: https://doi.org/10.1890/ES13-00038.1

Brais, S., Bélanger, N., & Guillemette, T. (2015). Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. Forest Ecology and Management, 348, 1–14. doi: https://doi.org/10.1016/j.foreco.2015.03.021

Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: A review. Forest Ecology and Management, 338, 124–138. doi: https://doi.org/10.1016/j.foreco.2014.11.022

Chen, G., Yang, Y., & Robinson, D. (2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses. New Phytologist, 200(4), 1176–1186. doi: https://doi.org/10.1111/nph.12426

Clark, A. L., & St. Clair, S. B. (2011). Mycorrhizas and secondary succession in aspen-conifer forests: Light limitation differentially affects a dominant early and late successional species. Forest Ecology and Management, 262(2), 203–207. doi: https://doi.org/10.1016/j.foreco.2011.03.024

Clarke, N., Gundersen, P., Jönsson-Belyazid, U., Kjønaas, O. J., Persson, T., Sigurdsson, B. D., … Vesterdal, L. (2015). Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. Forest Ecology and Management, 351, 9–19. doi: https://doi.org/10.1016/j.foreco.2015.04.034

Colombo, F., Macdonald, C. A., Jeffries, T. C., Powell, J. R., & Singh, B. K. (2016). Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology and Biochemistry, 94, 200–210. doi: https://doi.org/10.1016/j.soilbio.2015.11.029

Crow, S. E., Lajtha, K., Bowden, R. D., Yano, Y., Brant, J. B., Caldwell, B. A., & Sulzman, E. W. (2009). Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10), 2224–2232. doi: https://doi.org/10.1016/j.foreco.2009.01.014

Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187(2), 55. doi: https://doi.org/10.1007/s10661-015-4299-7

Diochon, A., & Kellman, L. (2008). Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance. Geophysical Research Letters, 35(14). doi: https://doi.org/10.1029/2008GL034795

Egnell, G. (2011). Is the productivity decline in Norway spruce following whole-tree harvesting in the final felling in boreal Sweden permanent or temporary? Forest Ecology and Management, 261(1), 148–153. doi: https://doi.org/10.1016/j.foreco.2010.09.045

Epron, D., Mouanda, C., Mareschal, L., & Koutika, L. S. (2015). Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations. Soil Biology and Biochemistry, 85, 183–189. doi: https://doi.org/10.1016/j.soilbio.2015.03.010

Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039. doi: https://doi.org/10.1126/science.1153213

Fleming, R. L., Leblanc, J. D., Weldon, T., Hazlett, P. W., Mossa, D. S., Irwin, R., … Wilson, S. A. (2018). Effect of vegetation control, harvest intensity, and soil disturbance on 20-year jack pine stand development. Canadian Journal of Forest Research, 48(4), 371–387. doi: https://doi.org/10.1139/cjfr-2017-0331

Foote, J. A., Boutton, T. W., & Scott, D. A. (2015). Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management. Forest Ecology and Management, 355, 48–57. doi: https://doi.org/10.1016/j.foreco.2015.03.036

Forrester, D. I., Pares, A., O’Hara, C., Khanna, P. K., & Bauhus, J. (2013). Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia. Ecosystems, 16(1), 123–132. doi: https://doi.org/10.1007/s10021-012-9600-9

Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D., & Lüscher, P. (2009). Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology, 45(4), 312–320. doi: https://doi.org/10.1016/j.ejsobi.2009.05.006

Galicia, L., Chávez-Vergara, B. M., Kolb, M., Jasso-Flores, R. I., Rodríguez-Bustos, L. A., Solís, L. E., … Villanueva, A. (2018). Perspectivas del enfoque socioecológico en la conservación, el aprovechamiento y pago de servicios ambientales de los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421443

Galicia, L., Gamboa, C. A. M., Cram, S., Vergara, B. C., Peña, R., V., Saynes, V., & Siebe, C. (2016). Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoamericana, 34(1), 1–29. Retrieved from http://www.scielo.org.mx/pdf/tl/v34n1/2395-8030-tl-34-01-00001.pdf

Galicia, L., Saynes, V., & Campo, J. (2015). Biomasa aérea, biomasa subterránea y necromasa en una cronosecuencia de bosques templados con aprovechamiento forestal. Botanical Sciences, 90(3), 473–484. doi: https://doi.org/10.17129/botsci.66

Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A., … Kasischke, E. S. (2012). Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research: Biogeosciences, 117(G2). doi: https://doi.org/10.1029/2011JG001733

Grand, S., & Lavkulich, L. M. (2012). Effects of forest harvest on soil carbon and related variables in Canadian spodosols. Soil Science Society of America Journal, 76(5), 1816–1827. doi: https://doi.org/10.2136/sssaj2012.0103

Guerra-De la Cruz, V., & Galicia, L. (2017). Tropical and highland temperate forest plantations in Mexico: Pathways for climate change mitigation and ecosystem services delivery. Forests, 8(12), 489. doi: https://doi.org/10.3390/f8120489

Harvey, B. J., & Holzman, B. A. (2014). Divergent successional pathways of stand development following fire in a California closed-cone pine forest. Journal of Vegetation Science, 25(1), 89–99. doi: https://doi.org/10.1111/jvs.12073

Hasselquist, N. J., Metcalfe, D. B., & Högberg, P. (2012). Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Global Change Biology, 18(12), 3596–3605. doi: https://doi.org/10.1111/gcb.12001

Hazlett, P. W., Morris, D. M., & Fleming, R. L. (2014). Effects of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Science Society of America Journal, 78(S1), S183–S195. doi: https://doi.org/10.2136/sssaj2013.08.0372nafsc

Helmisaari, H. S., Hanssen, K. H., Jacobson, S., Kukkola, M., Luiro, J., Saarsalmi, A., … Tveite, B. (2011). Logging residue removal after thinning in Nordic boreal forests: Long-term impact on tree growth. Forest Ecology and Management, 261(11), 1919–1927. doi: https://doi.org/10.1016/j.foreco.2011.02.015

Hernández-Salas, J., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E. J., González-Tagle, M. A., … Domínguez-Pereda, L. A. (2013). Forest managment effect in diversity and tree composition of a temperate forest in northwestern Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(2), 189–200. doi: https://doi.org/10.5154/r.rchscfa.2012.08.052

Huang, Z., He, Z., Wan, X., Hu, Z., Fan, S., & Yang, Y. (2013). Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant and Soil, 362(1–2), 303–314. doi: https://doi.org/10.1007/s11104-012-1341-1

Hynes, H. M., & Germida, J. J. (2012). Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biology and Biochemistry, 46, 18–25. doi: https://doi.org/10.1016/j.soilbio.2011.10.018

Ingerslev, M., Hansen, M., Pedersen, L. B., & Skov, S. (2014). Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil. Forest Ecology and Management, 334, 10–17. doi: https://doi.org/10.1016/j.foreco.2014.08.034

Janssens, I. A., & Luyssaert, S. (2009). Nitrogen’s carbon bonus. Nature Geoscience, 2(5), 318–319. doi: https://doi.org/10.1038/ngeo505

Jerabkova, L., Prescott, C. E., Titus, B. D., Hope, G. D., & Walters, M. B. (2011). A meta-analysis of the effects of Clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Canadian Journal of Forest Research, 41(9), 1852–1870. doi: https://doi.org/10.1139/x11-087

Jia, J., Yu, D., Zhou, W., Zhou, L., Bao, Y., Meng, Y., & Dai, L. (2015). Variations of soil aggregates and soil organic carbon mineralization across forest types on the northern slope of Changbai Mountain. Acta Ecologica Sinica, 35(2), 1–7. doi: https://doi.org/10.1016/j.chnaes.2014.03.008

Jones, H. S., Beets, P. N., Kimberley, M. O., & Garrett, L. G. (2011). Harvest residue management and fertilisation effects on soil carbon and nitrogen in a 15-year-old Pinus radiata plantation forest. Forest Ecology and Management, 262(3), 339–347. doi: https://doi.org/10.1016/j.foreco.2011.03.040

Jonsson, J. A., & Sigurdsson, B. D. (2010). Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation. Icelandic Agricultural Sciences, 23, 97–109. Retrieved from https://www.researchgate.net/publication/228638760_Effects_of_early_thinning_and_fertilization_on_soil_temperature_and_soil_respiration_in_a_poplar_plantation

Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R., & Palik, B. (2012). Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Science Society of America Journal, 76(4), 1418–1425. doi: https://doi.org/10.2136/sssaj2011.0257

Kaarakka, L., Tamminen, P., Saarsalmi, A., Kukkola, M., Helmisaari, H. S., & Burton, A. J. (2014). Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. Forest Ecology and Management, 313, 180–187. doi: https://doi.org/10.1016/j.foreco.2013.11.009

Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems and Environment, 148, 22–28. doi: https://doi.org/10.1016/j.agee.2011.10.021

Karltun, E., Saarsalmi, A., Ingerslev, M., Mandre, M., Andersson, S., Gaitnieks, T., … Varnagiryte-Kabasinskiene, I. (2008). Wood ash recycling – possibilities and risks. In D. Röser, A. Asikainen, K. Raulund-Rasmussen, & I. Stupak (Eds.), Sustainable use of forest biomass for energy: A synthesis with focus on the Baltic and Nordic region (pp. 79–108). Springer. doi: https://doi.org/10.1007/978-1-4020-5054-1_4

Kellman, L., Kumar, S., & Diochon, A. (2014). Soil nitrogen dynamics within profiles of a managed moist temperate forest chronosequence consistent with long-term harvesting-induced losses. Journal of Geophysical Research G: Biogeosciences, 119(7), 1309–1321. doi: https://doi.org/10.1002/2013JG002469

Koutika, L. S., Epron, D., Bouillet, J. P., & Mareschal, L. (2014). Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant and Soil, 379(1–2), 205–216. doi: https://doi.org/10.1007/s11104-014-2047-3

Kreutzweiser, D. P., Hazlett, P. W., & Gunn, J. M. (2008). Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environmental Reviews, 16, 157–179. doi: https://doi.org/10.1139/A08-006

Kumaraswamy, S., Mendham, D. S., Grove, T. S., O’Connell, A. M., Sankaran, K. V., & Rance, S. J. (2014). Harvest residue effects on soil organic matter, nutrients and microbial biomass in eucalypt plantations in Kerala, India. Forest Ecology and Management, 328, 140–149. doi: https://doi.org/10.1016/j.foreco.2014.05.021

Labelle, E. R., & Jaeger, D. (2011). Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Science Society of America Journal, 75(6), 2314–2329. doi: https://doi.org/10.2136/sssaj2011.0109

Laclau, J. P., Levillain, J., Deleporte, P., Nzila, J. de D., Bouillet, J. P., Saint André, L., … Ranger, J. (2010). Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. Forest Ecology and Management, 260(12), 2148–2159. doi: https://doi.org/10.1016/j.foreco.2010.09.007

LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371–379. doi: https://doi.org/10.1890/06-2057.1

Marchman, S. C., Miwa, M., Summer, W. B., Terrell, S., Jones, D. G., Scarbrough, S. L., & Jackson, C. R. (2015). Clearcutting and pine planting effects on nutrient concentrations and export in two mixed use headwater streams: Upper Coastal Plain, Southeastern USA. Hydrological Processes, 29(1), 13–28. doi: https://doi.org/10.1002/hyp.10121

Mendoza-Ponce, A., & Galicia, L. (2010). Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry, 83(5), 497–506. doi: https://doi.org/10.1093/forestry/cpq032

Merilä, P., Mustajärvi, K., Helmisaari, H. S., Hilli, S., Lindroos, A. J., Nieminen, T. M., … Ukonmaanaho, L. (2014). Above- and below-ground N stocks in coniferous boreal forests in Finland: Implications for sustainability of more intensive biomass utilization. Forest Ecology and Management, 311, 17–28. doi: https://doi.org/10.1016/j.foreco.2013.06.029

Monárrez-González, J. C., Pérez-Verdín, G., López-González, C., Márquez-Linares, M. A., & González, E. M. del S. (2018). Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421569

Mummey, D. L., Clarke, J. T., Cole, C. A., O’Connor, B. G., Gannon, J. E., & Ramsey, P. W. (2010). Spatial analysis reveals differences in soil microbial community interactions between adjacent coniferous forest and clearcut ecosystems. Soil Biology and Biochemistry, 42(7), 1138–1147. doi: https://doi.org/10.1016/j.soilbio.2010.03.020

Mushinski, R. M., Gentry, T. J., Dorosky, R. J., & Boutton, T. W. (2017). Forest harvest intensity and soil depth alter inorganic nitrogen pool sizes and ammonia oxidizer community composition. Soil Biology and Biochemistry, 112, 216–227. doi: https://doi.org/10.1016/j.soilbio.2017.05.015

Návar-Cháidez, J., & González-Elizondo, M. (2009). Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica, 27, 71–87. Retrieved from http://www.scielo.org.mx/pdf/polib/n27/n27a5.pdf

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma, 153(1–2), 231–240. doi: https://doi.org/10.1016/j.geoderma.2009.08.012

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857–866. doi: https://doi.org/10.1016/j.foreco.2009.12.009

Nilsen, P., & Strand, L. T. (2013). Carbon stores and fluxes in even- and uneven-aged Norway spruce stands. Silva Fennica, 47(4), 1–15. doi: https://doi.org/10.14214/sf.1024

Noormets, A., Epron, D., Domec, J. C., McNulty, S. G., Fox, T., Sun, G., & King, J. S. (2014). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124–140. doi: https://doi.org/10.1016/j.foreco.2015.05.019

Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E., & Ovaskainen, O. (2013). Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. Journal of Ecology, 101(3), 701–712. doi: https://doi.org/10.1111/1365-2745.12085

Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48, 497–519. doi: https://doi.org/10.1146/annurev-ecolsys-110316-022944

Pulido-Moncada, M. A., Lobo-Luján, D., & Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de Venezuela. Agrociencia, 43(3), 221–230. Retrieved from http://www.scielo.org.mx/pdf/agro/v43n3/v43n3a1.pdf

Rasche, F., Knapp, D., Kaiser, C., Koranda, M., Kitzler, B., Zechmeister-Boltenstern, S., …Sessitsch, A. (2011). Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME Journal, 5(3), 389–402. doi: https://doi.org/10.1038/ismej.2010.138

Reid, C., & Watmough, S. A. (2014). Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Canadian Journal of Forest Research, 44(8), 867–885. doi: https://doi.org/10.1139/cjfr-2013-0488

Ryan, M. G., Harmon, M. E., Birdsey, R. A., Giardina, C. P., Heath, L. S., Houghton, R. A., … Skog, K. E. (2010). A synthesis of the science on forests and carbon for U.S. Forests. Ecological Society of America: Issues In Ecology, 13, 1–16. Retrieved from https://nicholasinstitute.duke.edu/sites/default/files/publications/publication-science-forest-carbon-united-states-2010.pdf

Saarsalmi, A., Smolander, A., Kukkola, M., Moilanen, M., & Saramäki, J. (2012). 30-Year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. Forest Ecology and Management, 278, 63–70. doi: https://doi.org/10.1016/j.foreco.2012.05.006

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. doi: https://doi.org/10.1038/nature10386

Scott, D. A., Eaton, R. J., Foote, J. A., Vierra, B., Boutton, T. W., Blank, G. B., & Johnsen, K. (2014). Soil ecosystem services in loblolly pine plantations 15 years after harvest, compaction, and vegetation control. Soil Science Society of America Journal, 78(6), 2032–2040. doi: https://doi.org/10.2136/sssaj2014.02.0086

Seidl, R., Rammer, W., & Spies, T. A. (2014). Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 24(8), 2063–2077. doi: https://doi.org/10.1890/14-0255.1

Shabaga, J. A., Basiliko, N., Caspersen, J. P., & Jones, T. A. (2015). Seasonal controls on patterns of soil respiration and temperature sensitivity in a northern mixed deciduous forest following partial-harvesting. Forest Ecology and Management, 348, 208–219. doi: https://doi.org/10.1016/j.foreco.2015.03.022

Singh, B. K., Quince, C., Macdonald, C. A., Khachane, A., Thomas, N., Al-Soud, W. A., … Campbell, C. D. (2014). Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology, 16(8), 2408–2420. doi: https://doi.org/10.1111/1462-2920.12353

Smith, J., Harvey, B. D., Koubaa, A., Brais, S., & Mazerolle, M. J. (2016). Sprucing up the mixedwoods: Growth response of white spruce (Picea glauca) to partial cutting in the eastern Canadian boreal forest. Canadian Journal of Forest Research, 46(10), 1205–1215. doi: https://doi.org/10.1139/cjfr-2015-0489

Smolander, A., Saarsalmi, A., & Tamminen, P. (2015). Response of soil nutrient content, organic matter characteristics and growth of pine and spruce seedlings to logging residues. Forest Ecology and Management, 357, 117–125. doi: https://doi.org/10.1016/j.foreco.2015.07.019

Smyth, C. E., Titus, B., Trofymow, J. A., Moore, T. R., Preston, C. M., Prescott, C. E., & the CIDET Working Group. (2016). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant and Soil, 409(1–2), 459–477. doi: https://doi.org/10.1007/s11104-016-2972-4

Sørensen, R., Meili, M., Lambertsson, L., von Brömssen, C., & Bishop, K. (2009). The effects of forest harvest operations on mercury and methylmercury in two boreal streams: relatively small changes in the first two years prior to site preparation. Ambio, 38(7), 364–372. doi: https://doi.org/10.1579/0044-7447-38.7.364

Symonds, J., Morris, D. M., & Kwiaton, M. M. (2013). Effect of harvest intensity and soil moisture regime on the decomposition and release of nutrients from needle and twig litter in northwestern Ontario. Boreal Environment Research, 18(5), 401–413. doi: https://doi.org/10.1016/j.foreco.2015.04.034

Tamminen, P., & Saarsalmi, A. (2013). Effects of whole-tree harvesting on growth of pine and spruce seedlings in southern Finland. Scandinavian Journal of Forest Research, 26(6), 559–565. doi: https://doi.org/10.1080/02827581.2013.786124

Tamminen, P., Saarsalmi, A., Smolander, A., Kukkola, M., & Helmisaari, H. S. (2012). Effects of logging residue harvest in thinnings on amounts of soil carbon and nutrients in Scots pine and Norway spruce stands. Forest Ecology and Management, 263, 31–38. doi: https://doi.org/10.1016/j.foreco.2011.09.015

Taylor, A. R., Wang, J. R., & Kurz, W. A. (2008). Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. Forest Ecology and Management, 255(10), 3632–3641. doi: https://doi.org/10.1016/j.foreco.2008.02.052

Thiffault, E., Hannam, K. D., Paré, D., Titus, B. D., Hazlett, P. W., Maynard, D. G., & Brais, S. (2011). Effects of forest biomass harvesting on soil productivity in boreal and temperate forests-A review. Environmental Reviews, 19, 278–309. doi: https://doi.org/10.1139/a11-009

Toivio, J., Helmisaari, H. S., Palviainen, M., Lindeman, H., Ala-Ilomäki, J., Sirén, M., & Uusitalo, J. (2017). Impacts of timber forwarding on physical properties of forest soils in southern Finland. Forest Ecology and Management, 405, 22–30. doi: https://doi.org/10.1016/j.foreco.2017.09.022

Vanguelova, E., Pitman, R., Luiro, J., & Helmisaari, H. S. (2010). Long term effects of whole tree harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry, 101(1–3), 43–59. doi: https://doi.org/10.1007/s10533-010-9511-9

Versini, A., Nouvellon, Y., Laclau, J. P., Kinana, A., Mareschal, L., Zeller, B., … Epron, D. (2013). The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical Eucalyptus plantation. Forest Ecology and Management, 301, 79–88. doi: https://doi.org/10.1016/j.foreco.2012.07.045

Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18. doi: https://doi.org/10.1016/j.foreco.2013.01.017

Vicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin, F. S., Ciais, P., … Janssens, I. A. (2012). Fertile forests produce biomass more efficiently. Ecology Letters, 15(6), 520–526. doi: https://doi.org/10.1111/j.1461-0248.2012.01775.x

Wäldchen, J., Schulze, E. D., Schöning, I., Schrumpf, M., & Sierra, C. (2013). The influence of changes in forest management over the past 200years on present soil organic carbon stocks. Forest Ecology and Management, 289, 243–254. doi: https://doi.org/10.1016/j.foreco.2012.10.014

Wall, A., & Hytönen, J. (2011). The long-term effects of logging residue removal on forest floor nutrient capital, foliar chemistry and growth of a Norway spruce stand. Biomass and Bioenergy, 35(8), 3328–3334. doi: https://doi.org/10.1016/j.biombioe.2010.08.063

Wallace, J., Aquilue, N., Archambault, C., Carpentier, S., Francoeur, X., Greffard, M. H., … Messier, C. (2015). Present forest management structures and policies in temperate forests of Mexico: Challenges and prospects for unique tree species assemblages. Forestry Chronicle, 91(3), 306–317. doi: https://doi.org/10.5558/tfc2015-052

Walmsley, J. D., Jones, D. L., Reynolds, B., Price, M. H., & Healey, J. R. (2009). Whole tree harvesting can reduce second rotation forest productivity. Forest Ecology and Management, 257(3), 1104–1111. doi: https://doi.org/10.1016/j.foreco.2008.11.015

Wardle, D. A., & Jonsson, M. (2014). Long-term resilience of above- and belowground ecosystem components among contrasting ecosystems. Ecology, 95(7), 1836–1849. doi: https://doi.org/10.1890/13-1666.1

Wu, X., Wei, Y., Wang, J., Wang, D., She, L., Wang, J., & Cai, C. (2017). Effects of soil physicochemical properties on aggregate stability along a weathering gradient. CATENA, 156, 205–215. doi: https://doi.org/10.1016/j.catena.2017.04.017

Yesilonis, I., Szlavecz, K., Pouyat, R., Whigham, D., & Xia, L. (2016). Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. Forest Ecology and Management, 370, 83–92. doi: https://doi.org/10.1016/j.foreco.2016.03.046

Ziche, D., Grüneberg, E., Hilbrig, L., Höhle, J., Kompa, T., Liski, J., … Wellbrock, N. (2019). Comparing soil inventory with modelling: Carbon balance in central European forest soils varies among forest types. Science of the Total Environment, 647, 1573–1585. doi: https://doi.org/10.1016/j.scitotenv.2018.07.327

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente