##article.highlights##
- Forest management modifies the amount and composition of organic matter and microbial activity.
- Intensive management causes greater imbalance in microbial processes compared to selective methods.
- Intensive management damages the structure, nutrient reserves and microbial communities of soils.
- Affectations depend on the intensity of biomass extracted, environmental and site conditions.
Abstract
Introduction: The increase in the intensity of wood harvesting has a negative influence on ecosystem functions of soils in temperate and boreal forests.
Objective: To understand the impacts of intensive and extensive forest management methods on the physical, chemical and biological properties of soils, and consequences on nutrient availability and stabilization processes in temperate and boreal forests.
Results and discussion: Intensive forest management methods can generate greater imbalance in the processes of availability and stabilization of nutrients, compared to selective methods. The impact is reflected in the deterioration of soil structure and the decrease of nutrient reserves and microbial communities. These damages affect fertility and functionality of soil, decreasing long-term productivity. Affectations depend on the intensity of biomass extracted, environmental conditions and site preparation. This makes evident the need to monitor forest management and its impact on soil ecology in temperate forests, which maintains long-term productivity and ensures the availability of wood volumes.
Conclusion: In Mexico, the impact of forest management has been scarcely analyzed and it is indispensable to understand the functional changes in the processes that determine soil fertility and forest productivity.
References
Achat, D. L., Augusto, L., Bakker, M. R., Gallet-Budynek, A., & Morel, C. (2012). Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties. Soil Biology and Biochemistry, 44(1), 39–48. doi: https://doi.org/10.1016/j.soilbio.2011.09.007
Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74–80. doi: https://doi.org/10.1016/j.soilbio.2014.12.017
Ågren, G. I., Hyvönen, R., & Nilsson, T. (2008). Are Swedish forest soils sinks or sources for CO2 - Model analyses based on forest inventory data. Biogeochemistry, 44(1), 39–48. doi: https://doi.org/10.1007/s10533-007-9151-x
Laurent, A., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., & Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2), 444–466. doi: https://doi.org/10.1111/brv.12119
Ball, P. N., MacKenzie, M. D., DeLuca, T. H., & Montana, W. E. H. (2010). Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 39(4), 1243–1253. doi: https://doi.org/10.2134/jeq2009.0082
Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511. doi: https://doi.org/10.1038/nature13855
Boiffin, J., & Munson, A. D. (2013). Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere, 4(5), 1–20. doi: https://doi.org/10.1890/ES13-00038.1
Brais, S., Bélanger, N., & Guillemette, T. (2015). Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. Forest Ecology and Management, 348, 1–14. doi: https://doi.org/10.1016/j.foreco.2015.03.021
Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: A review. Forest Ecology and Management, 338, 124–138. doi: https://doi.org/10.1016/j.foreco.2014.11.022
Chen, G., Yang, Y., & Robinson, D. (2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses. New Phytologist, 200(4), 1176–1186. doi: https://doi.org/10.1111/nph.12426
Clark, A. L., & St. Clair, S. B. (2011). Mycorrhizas and secondary succession in aspen-conifer forests: Light limitation differentially affects a dominant early and late successional species. Forest Ecology and Management, 262(2), 203–207. doi: https://doi.org/10.1016/j.foreco.2011.03.024
Clarke, N., Gundersen, P., Jönsson-Belyazid, U., Kjønaas, O. J., Persson, T., Sigurdsson, B. D., … Vesterdal, L. (2015). Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. Forest Ecology and Management, 351, 9–19. doi: https://doi.org/10.1016/j.foreco.2015.04.034
Colombo, F., Macdonald, C. A., Jeffries, T. C., Powell, J. R., & Singh, B. K. (2016). Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology and Biochemistry, 94, 200–210. doi: https://doi.org/10.1016/j.soilbio.2015.11.029
Crow, S. E., Lajtha, K., Bowden, R. D., Yano, Y., Brant, J. B., Caldwell, B. A., & Sulzman, E. W. (2009). Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10), 2224–2232. doi: https://doi.org/10.1016/j.foreco.2009.01.014
Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187(2), 55. doi: https://doi.org/10.1007/s10661-015-4299-7
Diochon, A., & Kellman, L. (2008). Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance. Geophysical Research Letters, 35(14). doi: https://doi.org/10.1029/2008GL034795
Egnell, G. (2011). Is the productivity decline in Norway spruce following whole-tree harvesting in the final felling in boreal Sweden permanent or temporary? Forest Ecology and Management, 261(1), 148–153. doi: https://doi.org/10.1016/j.foreco.2010.09.045
Epron, D., Mouanda, C., Mareschal, L., & Koutika, L. S. (2015). Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations. Soil Biology and Biochemistry, 85, 183–189. doi: https://doi.org/10.1016/j.soilbio.2015.03.010
Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039. doi: https://doi.org/10.1126/science.1153213
Fleming, R. L., Leblanc, J. D., Weldon, T., Hazlett, P. W., Mossa, D. S., Irwin, R., … Wilson, S. A. (2018). Effect of vegetation control, harvest intensity, and soil disturbance on 20-year jack pine stand development. Canadian Journal of Forest Research, 48(4), 371–387. doi: https://doi.org/10.1139/cjfr-2017-0331
Foote, J. A., Boutton, T. W., & Scott, D. A. (2015). Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management. Forest Ecology and Management, 355, 48–57. doi: https://doi.org/10.1016/j.foreco.2015.03.036
Forrester, D. I., Pares, A., O’Hara, C., Khanna, P. K., & Bauhus, J. (2013). Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia. Ecosystems, 16(1), 123–132. doi: https://doi.org/10.1007/s10021-012-9600-9
Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D., & Lüscher, P. (2009). Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology, 45(4), 312–320. doi: https://doi.org/10.1016/j.ejsobi.2009.05.006
Galicia, L., Chávez-Vergara, B. M., Kolb, M., Jasso-Flores, R. I., Rodríguez-Bustos, L. A., Solís, L. E., … Villanueva, A. (2018). Perspectivas del enfoque socioecológico en la conservación, el aprovechamiento y pago de servicios ambientales de los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421443
Galicia, L., Gamboa, C. A. M., Cram, S., Vergara, B. C., Peña, R., V., Saynes, V., & Siebe, C. (2016). Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoamericana, 34(1), 1–29. Retrieved from http://www.scielo.org.mx/pdf/tl/v34n1/2395-8030-tl-34-01-00001.pdf
Galicia, L., Saynes, V., & Campo, J. (2015). Biomasa aérea, biomasa subterránea y necromasa en una cronosecuencia de bosques templados con aprovechamiento forestal. Botanical Sciences, 90(3), 473–484. doi: https://doi.org/10.17129/botsci.66
Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A., … Kasischke, E. S. (2012). Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research: Biogeosciences, 117(G2). doi: https://doi.org/10.1029/2011JG001733
Grand, S., & Lavkulich, L. M. (2012). Effects of forest harvest on soil carbon and related variables in Canadian spodosols. Soil Science Society of America Journal, 76(5), 1816–1827. doi: https://doi.org/10.2136/sssaj2012.0103
Guerra-De la Cruz, V., & Galicia, L. (2017). Tropical and highland temperate forest plantations in Mexico: Pathways for climate change mitigation and ecosystem services delivery. Forests, 8(12), 489. doi: https://doi.org/10.3390/f8120489
Harvey, B. J., & Holzman, B. A. (2014). Divergent successional pathways of stand development following fire in a California closed-cone pine forest. Journal of Vegetation Science, 25(1), 89–99. doi: https://doi.org/10.1111/jvs.12073
Hasselquist, N. J., Metcalfe, D. B., & Högberg, P. (2012). Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Global Change Biology, 18(12), 3596–3605. doi: https://doi.org/10.1111/gcb.12001
Hazlett, P. W., Morris, D. M., & Fleming, R. L. (2014). Effects of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Science Society of America Journal, 78(S1), S183–S195. doi: https://doi.org/10.2136/sssaj2013.08.0372nafsc
Helmisaari, H. S., Hanssen, K. H., Jacobson, S., Kukkola, M., Luiro, J., Saarsalmi, A., … Tveite, B. (2011). Logging residue removal after thinning in Nordic boreal forests: Long-term impact on tree growth. Forest Ecology and Management, 261(11), 1919–1927. doi: https://doi.org/10.1016/j.foreco.2011.02.015
Hernández-Salas, J., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E. J., González-Tagle, M. A., … Domínguez-Pereda, L. A. (2013). Forest managment effect in diversity and tree composition of a temperate forest in northwestern Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(2), 189–200. doi: https://doi.org/10.5154/r.rchscfa.2012.08.052
Huang, Z., He, Z., Wan, X., Hu, Z., Fan, S., & Yang, Y. (2013). Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant and Soil, 362(1–2), 303–314. doi: https://doi.org/10.1007/s11104-012-1341-1
Hynes, H. M., & Germida, J. J. (2012). Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biology and Biochemistry, 46, 18–25. doi: https://doi.org/10.1016/j.soilbio.2011.10.018
Ingerslev, M., Hansen, M., Pedersen, L. B., & Skov, S. (2014). Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil. Forest Ecology and Management, 334, 10–17. doi: https://doi.org/10.1016/j.foreco.2014.08.034
Janssens, I. A., & Luyssaert, S. (2009). Nitrogen’s carbon bonus. Nature Geoscience, 2(5), 318–319. doi: https://doi.org/10.1038/ngeo505
Jerabkova, L., Prescott, C. E., Titus, B. D., Hope, G. D., & Walters, M. B. (2011). A meta-analysis of the effects of Clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Canadian Journal of Forest Research, 41(9), 1852–1870. doi: https://doi.org/10.1139/x11-087
Jia, J., Yu, D., Zhou, W., Zhou, L., Bao, Y., Meng, Y., & Dai, L. (2015). Variations of soil aggregates and soil organic carbon mineralization across forest types on the northern slope of Changbai Mountain. Acta Ecologica Sinica, 35(2), 1–7. doi: https://doi.org/10.1016/j.chnaes.2014.03.008
Jones, H. S., Beets, P. N., Kimberley, M. O., & Garrett, L. G. (2011). Harvest residue management and fertilisation effects on soil carbon and nitrogen in a 15-year-old Pinus radiata plantation forest. Forest Ecology and Management, 262(3), 339–347. doi: https://doi.org/10.1016/j.foreco.2011.03.040
Jonsson, J. A., & Sigurdsson, B. D. (2010). Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation. Icelandic Agricultural Sciences, 23, 97–109. Retrieved from https://www.researchgate.net/publication/228638760_Effects_of_early_thinning_and_fertilization_on_soil_temperature_and_soil_respiration_in_a_poplar_plantation
Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R., & Palik, B. (2012). Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Science Society of America Journal, 76(4), 1418–1425. doi: https://doi.org/10.2136/sssaj2011.0257
Kaarakka, L., Tamminen, P., Saarsalmi, A., Kukkola, M., Helmisaari, H. S., & Burton, A. J. (2014). Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. Forest Ecology and Management, 313, 180–187. doi: https://doi.org/10.1016/j.foreco.2013.11.009
Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems and Environment, 148, 22–28. doi: https://doi.org/10.1016/j.agee.2011.10.021
Karltun, E., Saarsalmi, A., Ingerslev, M., Mandre, M., Andersson, S., Gaitnieks, T., … Varnagiryte-Kabasinskiene, I. (2008). Wood ash recycling – possibilities and risks. In D. Röser, A. Asikainen, K. Raulund-Rasmussen, & I. Stupak (Eds.), Sustainable use of forest biomass for energy: A synthesis with focus on the Baltic and Nordic region (pp. 79–108). Springer. doi: https://doi.org/10.1007/978-1-4020-5054-1_4
Kellman, L., Kumar, S., & Diochon, A. (2014). Soil nitrogen dynamics within profiles of a managed moist temperate forest chronosequence consistent with long-term harvesting-induced losses. Journal of Geophysical Research G: Biogeosciences, 119(7), 1309–1321. doi: https://doi.org/10.1002/2013JG002469
Koutika, L. S., Epron, D., Bouillet, J. P., & Mareschal, L. (2014). Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant and Soil, 379(1–2), 205–216. doi: https://doi.org/10.1007/s11104-014-2047-3
Kreutzweiser, D. P., Hazlett, P. W., & Gunn, J. M. (2008). Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environmental Reviews, 16, 157–179. doi: https://doi.org/10.1139/A08-006
Kumaraswamy, S., Mendham, D. S., Grove, T. S., O’Connell, A. M., Sankaran, K. V., & Rance, S. J. (2014). Harvest residue effects on soil organic matter, nutrients and microbial biomass in eucalypt plantations in Kerala, India. Forest Ecology and Management, 328, 140–149. doi: https://doi.org/10.1016/j.foreco.2014.05.021
Labelle, E. R., & Jaeger, D. (2011). Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Science Society of America Journal, 75(6), 2314–2329. doi: https://doi.org/10.2136/sssaj2011.0109
Laclau, J. P., Levillain, J., Deleporte, P., Nzila, J. de D., Bouillet, J. P., Saint André, L., … Ranger, J. (2010). Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. Forest Ecology and Management, 260(12), 2148–2159. doi: https://doi.org/10.1016/j.foreco.2010.09.007
LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371–379. doi: https://doi.org/10.1890/06-2057.1
Marchman, S. C., Miwa, M., Summer, W. B., Terrell, S., Jones, D. G., Scarbrough, S. L., & Jackson, C. R. (2015). Clearcutting and pine planting effects on nutrient concentrations and export in two mixed use headwater streams: Upper Coastal Plain, Southeastern USA. Hydrological Processes, 29(1), 13–28. doi: https://doi.org/10.1002/hyp.10121
Mendoza-Ponce, A., & Galicia, L. (2010). Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry, 83(5), 497–506. doi: https://doi.org/10.1093/forestry/cpq032
Merilä, P., Mustajärvi, K., Helmisaari, H. S., Hilli, S., Lindroos, A. J., Nieminen, T. M., … Ukonmaanaho, L. (2014). Above- and below-ground N stocks in coniferous boreal forests in Finland: Implications for sustainability of more intensive biomass utilization. Forest Ecology and Management, 311, 17–28. doi: https://doi.org/10.1016/j.foreco.2013.06.029
Monárrez-González, J. C., Pérez-Verdín, G., López-González, C., Márquez-Linares, M. A., & González, E. M. del S. (2018). Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421569
Mummey, D. L., Clarke, J. T., Cole, C. A., O’Connor, B. G., Gannon, J. E., & Ramsey, P. W. (2010). Spatial analysis reveals differences in soil microbial community interactions between adjacent coniferous forest and clearcut ecosystems. Soil Biology and Biochemistry, 42(7), 1138–1147. doi: https://doi.org/10.1016/j.soilbio.2010.03.020
Mushinski, R. M., Gentry, T. J., Dorosky, R. J., & Boutton, T. W. (2017). Forest harvest intensity and soil depth alter inorganic nitrogen pool sizes and ammonia oxidizer community composition. Soil Biology and Biochemistry, 112, 216–227. doi: https://doi.org/10.1016/j.soilbio.2017.05.015
Návar-Cháidez, J., & González-Elizondo, M. (2009). Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica, 27, 71–87. Retrieved from http://www.scielo.org.mx/pdf/polib/n27/n27a5.pdf
Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma, 153(1–2), 231–240. doi: https://doi.org/10.1016/j.geoderma.2009.08.012
Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857–866. doi: https://doi.org/10.1016/j.foreco.2009.12.009
Nilsen, P., & Strand, L. T. (2013). Carbon stores and fluxes in even- and uneven-aged Norway spruce stands. Silva Fennica, 47(4), 1–15. doi: https://doi.org/10.14214/sf.1024
Noormets, A., Epron, D., Domec, J. C., McNulty, S. G., Fox, T., Sun, G., & King, J. S. (2014). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124–140. doi: https://doi.org/10.1016/j.foreco.2015.05.019
Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E., & Ovaskainen, O. (2013). Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. Journal of Ecology, 101(3), 701–712. doi: https://doi.org/10.1111/1365-2745.12085
Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48, 497–519. doi: https://doi.org/10.1146/annurev-ecolsys-110316-022944
Pulido-Moncada, M. A., Lobo-Luján, D., & Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de Venezuela. Agrociencia, 43(3), 221–230. Retrieved from http://www.scielo.org.mx/pdf/agro/v43n3/v43n3a1.pdf
Rasche, F., Knapp, D., Kaiser, C., Koranda, M., Kitzler, B., Zechmeister-Boltenstern, S., …Sessitsch, A. (2011). Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME Journal, 5(3), 389–402. doi: https://doi.org/10.1038/ismej.2010.138
Reid, C., & Watmough, S. A. (2014). Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Canadian Journal of Forest Research, 44(8), 867–885. doi: https://doi.org/10.1139/cjfr-2013-0488
Ryan, M. G., Harmon, M. E., Birdsey, R. A., Giardina, C. P., Heath, L. S., Houghton, R. A., … Skog, K. E. (2010). A synthesis of the science on forests and carbon for U.S. Forests. Ecological Society of America: Issues In Ecology, 13, 1–16. Retrieved from https://nicholasinstitute.duke.edu/sites/default/files/publications/publication-science-forest-carbon-united-states-2010.pdf
Saarsalmi, A., Smolander, A., Kukkola, M., Moilanen, M., & Saramäki, J. (2012). 30-Year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. Forest Ecology and Management, 278, 63–70. doi: https://doi.org/10.1016/j.foreco.2012.05.006
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. doi: https://doi.org/10.1038/nature10386
Scott, D. A., Eaton, R. J., Foote, J. A., Vierra, B., Boutton, T. W., Blank, G. B., & Johnsen, K. (2014). Soil ecosystem services in loblolly pine plantations 15 years after harvest, compaction, and vegetation control. Soil Science Society of America Journal, 78(6), 2032–2040. doi: https://doi.org/10.2136/sssaj2014.02.0086
Seidl, R., Rammer, W., & Spies, T. A. (2014). Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 24(8), 2063–2077. doi: https://doi.org/10.1890/14-0255.1
Shabaga, J. A., Basiliko, N., Caspersen, J. P., & Jones, T. A. (2015). Seasonal controls on patterns of soil respiration and temperature sensitivity in a northern mixed deciduous forest following partial-harvesting. Forest Ecology and Management, 348, 208–219. doi: https://doi.org/10.1016/j.foreco.2015.03.022
Singh, B. K., Quince, C., Macdonald, C. A., Khachane, A., Thomas, N., Al-Soud, W. A., … Campbell, C. D. (2014). Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology, 16(8), 2408–2420. doi: https://doi.org/10.1111/1462-2920.12353
Smith, J., Harvey, B. D., Koubaa, A., Brais, S., & Mazerolle, M. J. (2016). Sprucing up the mixedwoods: Growth response of white spruce (Picea glauca) to partial cutting in the eastern Canadian boreal forest. Canadian Journal of Forest Research, 46(10), 1205–1215. doi: https://doi.org/10.1139/cjfr-2015-0489
Smolander, A., Saarsalmi, A., & Tamminen, P. (2015). Response of soil nutrient content, organic matter characteristics and growth of pine and spruce seedlings to logging residues. Forest Ecology and Management, 357, 117–125. doi: https://doi.org/10.1016/j.foreco.2015.07.019
Smyth, C. E., Titus, B., Trofymow, J. A., Moore, T. R., Preston, C. M., Prescott, C. E., & the CIDET Working Group. (2016). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant and Soil, 409(1–2), 459–477. doi: https://doi.org/10.1007/s11104-016-2972-4
Sørensen, R., Meili, M., Lambertsson, L., von Brömssen, C., & Bishop, K. (2009). The effects of forest harvest operations on mercury and methylmercury in two boreal streams: relatively small changes in the first two years prior to site preparation. Ambio, 38(7), 364–372. doi: https://doi.org/10.1579/0044-7447-38.7.364
Symonds, J., Morris, D. M., & Kwiaton, M. M. (2013). Effect of harvest intensity and soil moisture regime on the decomposition and release of nutrients from needle and twig litter in northwestern Ontario. Boreal Environment Research, 18(5), 401–413. doi: https://doi.org/10.1016/j.foreco.2015.04.034
Tamminen, P., & Saarsalmi, A. (2013). Effects of whole-tree harvesting on growth of pine and spruce seedlings in southern Finland. Scandinavian Journal of Forest Research, 26(6), 559–565. doi: https://doi.org/10.1080/02827581.2013.786124
Tamminen, P., Saarsalmi, A., Smolander, A., Kukkola, M., & Helmisaari, H. S. (2012). Effects of logging residue harvest in thinnings on amounts of soil carbon and nutrients in Scots pine and Norway spruce stands. Forest Ecology and Management, 263, 31–38. doi: https://doi.org/10.1016/j.foreco.2011.09.015
Taylor, A. R., Wang, J. R., & Kurz, W. A. (2008). Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. Forest Ecology and Management, 255(10), 3632–3641. doi: https://doi.org/10.1016/j.foreco.2008.02.052
Thiffault, E., Hannam, K. D., Paré, D., Titus, B. D., Hazlett, P. W., Maynard, D. G., & Brais, S. (2011). Effects of forest biomass harvesting on soil productivity in boreal and temperate forests-A review. Environmental Reviews, 19, 278–309. doi: https://doi.org/10.1139/a11-009
Toivio, J., Helmisaari, H. S., Palviainen, M., Lindeman, H., Ala-Ilomäki, J., Sirén, M., & Uusitalo, J. (2017). Impacts of timber forwarding on physical properties of forest soils in southern Finland. Forest Ecology and Management, 405, 22–30. doi: https://doi.org/10.1016/j.foreco.2017.09.022
Vanguelova, E., Pitman, R., Luiro, J., & Helmisaari, H. S. (2010). Long term effects of whole tree harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry, 101(1–3), 43–59. doi: https://doi.org/10.1007/s10533-010-9511-9
Versini, A., Nouvellon, Y., Laclau, J. P., Kinana, A., Mareschal, L., Zeller, B., … Epron, D. (2013). The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical Eucalyptus plantation. Forest Ecology and Management, 301, 79–88. doi: https://doi.org/10.1016/j.foreco.2012.07.045
Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18. doi: https://doi.org/10.1016/j.foreco.2013.01.017
Vicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin, F. S., Ciais, P., … Janssens, I. A. (2012). Fertile forests produce biomass more efficiently. Ecology Letters, 15(6), 520–526. doi: https://doi.org/10.1111/j.1461-0248.2012.01775.x
Wäldchen, J., Schulze, E. D., Schöning, I., Schrumpf, M., & Sierra, C. (2013). The influence of changes in forest management over the past 200years on present soil organic carbon stocks. Forest Ecology and Management, 289, 243–254. doi: https://doi.org/10.1016/j.foreco.2012.10.014
Wall, A., & Hytönen, J. (2011). The long-term effects of logging residue removal on forest floor nutrient capital, foliar chemistry and growth of a Norway spruce stand. Biomass and Bioenergy, 35(8), 3328–3334. doi: https://doi.org/10.1016/j.biombioe.2010.08.063
Wallace, J., Aquilue, N., Archambault, C., Carpentier, S., Francoeur, X., Greffard, M. H., … Messier, C. (2015). Present forest management structures and policies in temperate forests of Mexico: Challenges and prospects for unique tree species assemblages. Forestry Chronicle, 91(3), 306–317. doi: https://doi.org/10.5558/tfc2015-052
Walmsley, J. D., Jones, D. L., Reynolds, B., Price, M. H., & Healey, J. R. (2009). Whole tree harvesting can reduce second rotation forest productivity. Forest Ecology and Management, 257(3), 1104–1111. doi: https://doi.org/10.1016/j.foreco.2008.11.015
Wardle, D. A., & Jonsson, M. (2014). Long-term resilience of above- and belowground ecosystem components among contrasting ecosystems. Ecology, 95(7), 1836–1849. doi: https://doi.org/10.1890/13-1666.1
Wu, X., Wei, Y., Wang, J., Wang, D., She, L., Wang, J., & Cai, C. (2017). Effects of soil physicochemical properties on aggregate stability along a weathering gradient. CATENA, 156, 205–215. doi: https://doi.org/10.1016/j.catena.2017.04.017
Yesilonis, I., Szlavecz, K., Pouyat, R., Whigham, D., & Xia, L. (2016). Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. Forest Ecology and Management, 370, 83–92. doi: https://doi.org/10.1016/j.foreco.2016.03.046
Ziche, D., Grüneberg, E., Hilbrig, L., Höhle, J., Kompa, T., Liski, J., … Wellbrock, N. (2019). Comparing soil inventory with modelling: Carbon balance in central European forest soils varies among forest types. Science of the Total Environment, 647, 1573–1585. doi: https://doi.org/10.1016/j.scitotenv.2018.07.327

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente