Revista Chapingo Serie Ciencias Forestales y del Ambiente
Impacts of forest management on soil properties: a fundamental research topic for Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Carbon
nutrient availability
fertilization
temperate forests
microbial communities

How to Cite

Valladares-Samperio, V.-S., & Galicia-Sarmiento, L. (2020). Impacts of forest management on soil properties: a fundamental research topic for Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 33–52. https://doi.org/10.5154/r.rchscfa.2019.11.088

##article.highlights##

  • Forest management modifies the amount and composition of organic matter and microbial activity.
  • Intensive management causes greater imbalance in microbial processes compared to selective methods.
  • Intensive management damages the structure, nutrient reserves and microbial communities of soils.
  • Affectations depend on the intensity of biomass extracted, environmental and site conditions.

Abstract

Introduction: The increase in the intensity of wood harvesting has a negative influence on ecosystem functions of soils in temperate and boreal forests.
Objective: To understand the impacts of intensive and extensive forest management methods on the physical, chemical and biological properties of soils, and consequences on nutrient availability and stabilization processes in temperate and boreal forests.
Results and discussion: Intensive forest management methods can generate greater imbalance in the processes of availability and stabilization of nutrients, compared to selective methods. The impact is reflected in the deterioration of soil structure and the decrease of nutrient reserves and microbial communities. These damages affect fertility and functionality of soil, decreasing long-term productivity. Affectations depend on the intensity of biomass extracted, environmental conditions and site preparation. This makes evident the need to monitor forest management and its impact on soil ecology in temperate forests, which maintains long-term productivity and ensures the availability of wood volumes.
Conclusion: In Mexico, the impact of forest management has been scarcely analyzed and it is indispensable to understand the functional changes in the processes that determine soil fertility and forest productivity.

https://doi.org/10.5154/r.rchscfa.2019.11.088
PDF

References

Achat, D. L., Augusto, L., Bakker, M. R., Gallet-Budynek, A., & Morel, C. (2012). Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties. Soil Biology and Biochemistry, 44(1), 39–48. doi: https://doi.org/10.1016/j.soilbio.2011.09.007

Adamczyk, B., Adamczyk, S., Kukkola, M., Tamminen, P., & Smolander, A. (2015). Logging residue harvest may decrease enzymatic activity of boreal forest soils. Soil Biology and Biochemistry, 82, 74–80. doi: https://doi.org/10.1016/j.soilbio.2014.12.017

Ågren, G. I., Hyvönen, R., & Nilsson, T. (2008). Are Swedish forest soils sinks or sources for CO2 - Model analyses based on forest inventory data. Biogeochemistry, 44(1), 39–48. doi: https://doi.org/10.1007/s10533-007-9151-x

Laurent, A., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., & Ranger, J. (2015). Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews, 90(2), 444–466. doi: https://doi.org/10.1111/brv.12119

Ball, P. N., MacKenzie, M. D., DeLuca, T. H., & Montana, W. E. H. (2010). Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 39(4), 1243–1253. doi: https://doi.org/10.2134/jeq2009.0082

Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511. doi: https://doi.org/10.1038/nature13855

Boiffin, J., & Munson, A. D. (2013). Three large fire years threaten resilience of closed crown black spruce forests in eastern Canada. Ecosphere, 4(5), 1–20. doi: https://doi.org/10.1890/ES13-00038.1

Brais, S., Bélanger, N., & Guillemette, T. (2015). Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. Forest Ecology and Management, 348, 1–14. doi: https://doi.org/10.1016/j.foreco.2015.03.021

Cambi, M., Certini, G., Neri, F., & Marchi, E. (2015). The impact of heavy traffic on forest soils: A review. Forest Ecology and Management, 338, 124–138. doi: https://doi.org/10.1016/j.foreco.2014.11.022

Chen, G., Yang, Y., & Robinson, D. (2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses. New Phytologist, 200(4), 1176–1186. doi: https://doi.org/10.1111/nph.12426

Clark, A. L., & St. Clair, S. B. (2011). Mycorrhizas and secondary succession in aspen-conifer forests: Light limitation differentially affects a dominant early and late successional species. Forest Ecology and Management, 262(2), 203–207. doi: https://doi.org/10.1016/j.foreco.2011.03.024

Clarke, N., Gundersen, P., Jönsson-Belyazid, U., Kjønaas, O. J., Persson, T., Sigurdsson, B. D., … Vesterdal, L. (2015). Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. Forest Ecology and Management, 351, 9–19. doi: https://doi.org/10.1016/j.foreco.2015.04.034

Colombo, F., Macdonald, C. A., Jeffries, T. C., Powell, J. R., & Singh, B. K. (2016). Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology and Biochemistry, 94, 200–210. doi: https://doi.org/10.1016/j.soilbio.2015.11.029

Crow, S. E., Lajtha, K., Bowden, R. D., Yano, Y., Brant, J. B., Caldwell, B. A., & Sulzman, E. W. (2009). Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10), 2224–2232. doi: https://doi.org/10.1016/j.foreco.2009.01.014

Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187(2), 55. doi: https://doi.org/10.1007/s10661-015-4299-7

Diochon, A., & Kellman, L. (2008). Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance. Geophysical Research Letters, 35(14). doi: https://doi.org/10.1029/2008GL034795

Egnell, G. (2011). Is the productivity decline in Norway spruce following whole-tree harvesting in the final felling in boreal Sweden permanent or temporary? Forest Ecology and Management, 261(1), 148–153. doi: https://doi.org/10.1016/j.foreco.2010.09.045

Epron, D., Mouanda, C., Mareschal, L., & Koutika, L. S. (2015). Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations. Soil Biology and Biochemistry, 85, 183–189. doi: https://doi.org/10.1016/j.soilbio.2015.03.010

Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034–1039. doi: https://doi.org/10.1126/science.1153213

Fleming, R. L., Leblanc, J. D., Weldon, T., Hazlett, P. W., Mossa, D. S., Irwin, R., … Wilson, S. A. (2018). Effect of vegetation control, harvest intensity, and soil disturbance on 20-year jack pine stand development. Canadian Journal of Forest Research, 48(4), 371–387. doi: https://doi.org/10.1139/cjfr-2017-0331

Foote, J. A., Boutton, T. W., & Scott, D. A. (2015). Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management. Forest Ecology and Management, 355, 48–57. doi: https://doi.org/10.1016/j.foreco.2015.03.036

Forrester, D. I., Pares, A., O’Hara, C., Khanna, P. K., & Bauhus, J. (2013). Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia. Ecosystems, 16(1), 123–132. doi: https://doi.org/10.1007/s10021-012-9600-9

Frey, B., Kremer, J., Rüdt, A., Sciacca, S., Matthies, D., & Lüscher, P. (2009). Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. European Journal of Soil Biology, 45(4), 312–320. doi: https://doi.org/10.1016/j.ejsobi.2009.05.006

Galicia, L., Chávez-Vergara, B. M., Kolb, M., Jasso-Flores, R. I., Rodríguez-Bustos, L. A., Solís, L. E., … Villanueva, A. (2018). Perspectivas del enfoque socioecológico en la conservación, el aprovechamiento y pago de servicios ambientales de los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421443

Galicia, L., Gamboa, C. A. M., Cram, S., Vergara, B. C., Peña, R., V., Saynes, V., & Siebe, C. (2016). Almacén y dinámica del carbono orgánico del suelo en bosques templados de México. Terra Latinoamericana, 34(1), 1–29. Retrieved from http://www.scielo.org.mx/pdf/tl/v34n1/2395-8030-tl-34-01-00001.pdf

Galicia, L., Saynes, V., & Campo, J. (2015). Biomasa aérea, biomasa subterránea y necromasa en una cronosecuencia de bosques templados con aprovechamiento forestal. Botanical Sciences, 90(3), 473–484. doi: https://doi.org/10.17129/botsci.66

Goetz, S. J., Bond-Lamberty, B., Law, B. E., Hicke, J. A., Huang, C., Houghton, R. A., … Kasischke, E. S. (2012). Observations and assessment of forest carbon dynamics following disturbance in North America. Journal of Geophysical Research: Biogeosciences, 117(G2). doi: https://doi.org/10.1029/2011JG001733

Grand, S., & Lavkulich, L. M. (2012). Effects of forest harvest on soil carbon and related variables in Canadian spodosols. Soil Science Society of America Journal, 76(5), 1816–1827. doi: https://doi.org/10.2136/sssaj2012.0103

Guerra-De la Cruz, V., & Galicia, L. (2017). Tropical and highland temperate forest plantations in Mexico: Pathways for climate change mitigation and ecosystem services delivery. Forests, 8(12), 489. doi: https://doi.org/10.3390/f8120489

Harvey, B. J., & Holzman, B. A. (2014). Divergent successional pathways of stand development following fire in a California closed-cone pine forest. Journal of Vegetation Science, 25(1), 89–99. doi: https://doi.org/10.1111/jvs.12073

Hasselquist, N. J., Metcalfe, D. B., & Högberg, P. (2012). Contrasting effects of low and high nitrogen additions on soil CO2 flux components and ectomycorrhizal fungal sporocarp production in a boreal forest. Global Change Biology, 18(12), 3596–3605. doi: https://doi.org/10.1111/gcb.12001

Hazlett, P. W., Morris, D. M., & Fleming, R. L. (2014). Effects of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Science Society of America Journal, 78(S1), S183–S195. doi: https://doi.org/10.2136/sssaj2013.08.0372nafsc

Helmisaari, H. S., Hanssen, K. H., Jacobson, S., Kukkola, M., Luiro, J., Saarsalmi, A., … Tveite, B. (2011). Logging residue removal after thinning in Nordic boreal forests: Long-term impact on tree growth. Forest Ecology and Management, 261(11), 1919–1927. doi: https://doi.org/10.1016/j.foreco.2011.02.015

Hernández-Salas, J., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E. J., González-Tagle, M. A., … Domínguez-Pereda, L. A. (2013). Forest managment effect in diversity and tree composition of a temperate forest in northwestern Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 19(2), 189–200. doi: https://doi.org/10.5154/r.rchscfa.2012.08.052

Huang, Z., He, Z., Wan, X., Hu, Z., Fan, S., & Yang, Y. (2013). Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant and Soil, 362(1–2), 303–314. doi: https://doi.org/10.1007/s11104-012-1341-1

Hynes, H. M., & Germida, J. J. (2012). Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biology and Biochemistry, 46, 18–25. doi: https://doi.org/10.1016/j.soilbio.2011.10.018

Ingerslev, M., Hansen, M., Pedersen, L. B., & Skov, S. (2014). Effects of wood chip ash fertilization on soil chemistry in a Norway spruce plantation on a nutrient-poor soil. Forest Ecology and Management, 334, 10–17. doi: https://doi.org/10.1016/j.foreco.2014.08.034

Janssens, I. A., & Luyssaert, S. (2009). Nitrogen’s carbon bonus. Nature Geoscience, 2(5), 318–319. doi: https://doi.org/10.1038/ngeo505

Jerabkova, L., Prescott, C. E., Titus, B. D., Hope, G. D., & Walters, M. B. (2011). A meta-analysis of the effects of Clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Canadian Journal of Forest Research, 41(9), 1852–1870. doi: https://doi.org/10.1139/x11-087

Jia, J., Yu, D., Zhou, W., Zhou, L., Bao, Y., Meng, Y., & Dai, L. (2015). Variations of soil aggregates and soil organic carbon mineralization across forest types on the northern slope of Changbai Mountain. Acta Ecologica Sinica, 35(2), 1–7. doi: https://doi.org/10.1016/j.chnaes.2014.03.008

Jones, H. S., Beets, P. N., Kimberley, M. O., & Garrett, L. G. (2011). Harvest residue management and fertilisation effects on soil carbon and nitrogen in a 15-year-old Pinus radiata plantation forest. Forest Ecology and Management, 262(3), 339–347. doi: https://doi.org/10.1016/j.foreco.2011.03.040

Jonsson, J. A., & Sigurdsson, B. D. (2010). Effects of early thinning and fertilization on soil temperature and soil respiration in a poplar plantation. Icelandic Agricultural Sciences, 23, 97–109. Retrieved from https://www.researchgate.net/publication/228638760_Effects_of_early_thinning_and_fertilization_on_soil_temperature_and_soil_respiration_in_a_poplar_plantation

Jurgensen, M., Tarpey, R., Pickens, J., Kolka, R., & Palik, B. (2012). Long-term effect of silvicultural thinnings on soil carbon and nitrogen pools. Soil Science Society of America Journal, 76(4), 1418–1425. doi: https://doi.org/10.2136/sssaj2011.0257

Kaarakka, L., Tamminen, P., Saarsalmi, A., Kukkola, M., Helmisaari, H. S., & Burton, A. J. (2014). Effects of repeated whole-tree harvesting on soil properties and tree growth in a Norway spruce (Picea abies (L.) Karst.) stand. Forest Ecology and Management, 313, 180–187. doi: https://doi.org/10.1016/j.foreco.2013.11.009

Karami, A., Homaee, M., Afzalinia, S., Ruhipour, H., & Basirat, S. (2012). Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems and Environment, 148, 22–28. doi: https://doi.org/10.1016/j.agee.2011.10.021

Karltun, E., Saarsalmi, A., Ingerslev, M., Mandre, M., Andersson, S., Gaitnieks, T., … Varnagiryte-Kabasinskiene, I. (2008). Wood ash recycling – possibilities and risks. In D. Röser, A. Asikainen, K. Raulund-Rasmussen, & I. Stupak (Eds.), Sustainable use of forest biomass for energy: A synthesis with focus on the Baltic and Nordic region (pp. 79–108). Springer. doi: https://doi.org/10.1007/978-1-4020-5054-1_4

Kellman, L., Kumar, S., & Diochon, A. (2014). Soil nitrogen dynamics within profiles of a managed moist temperate forest chronosequence consistent with long-term harvesting-induced losses. Journal of Geophysical Research G: Biogeosciences, 119(7), 1309–1321. doi: https://doi.org/10.1002/2013JG002469

Koutika, L. S., Epron, D., Bouillet, J. P., & Mareschal, L. (2014). Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant and Soil, 379(1–2), 205–216. doi: https://doi.org/10.1007/s11104-014-2047-3

Kreutzweiser, D. P., Hazlett, P. W., & Gunn, J. M. (2008). Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environmental Reviews, 16, 157–179. doi: https://doi.org/10.1139/A08-006

Kumaraswamy, S., Mendham, D. S., Grove, T. S., O’Connell, A. M., Sankaran, K. V., & Rance, S. J. (2014). Harvest residue effects on soil organic matter, nutrients and microbial biomass in eucalypt plantations in Kerala, India. Forest Ecology and Management, 328, 140–149. doi: https://doi.org/10.1016/j.foreco.2014.05.021

Labelle, E. R., & Jaeger, D. (2011). Soil compaction caused by cut-to-length forest operations and possible short-term natural rehabilitation of soil density. Soil Science Society of America Journal, 75(6), 2314–2329. doi: https://doi.org/10.2136/sssaj2011.0109

Laclau, J. P., Levillain, J., Deleporte, P., Nzila, J. de D., Bouillet, J. P., Saint André, L., … Ranger, J. (2010). Organic residue mass at planting is an excellent predictor of tree growth in Eucalyptus plantations established on a sandy tropical soil. Forest Ecology and Management, 260(12), 2148–2159. doi: https://doi.org/10.1016/j.foreco.2010.09.007

LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371–379. doi: https://doi.org/10.1890/06-2057.1

Marchman, S. C., Miwa, M., Summer, W. B., Terrell, S., Jones, D. G., Scarbrough, S. L., & Jackson, C. R. (2015). Clearcutting and pine planting effects on nutrient concentrations and export in two mixed use headwater streams: Upper Coastal Plain, Southeastern USA. Hydrological Processes, 29(1), 13–28. doi: https://doi.org/10.1002/hyp.10121

Mendoza-Ponce, A., & Galicia, L. (2010). Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry, 83(5), 497–506. doi: https://doi.org/10.1093/forestry/cpq032

Merilä, P., Mustajärvi, K., Helmisaari, H. S., Hilli, S., Lindroos, A. J., Nieminen, T. M., … Ukonmaanaho, L. (2014). Above- and below-ground N stocks in coniferous boreal forests in Finland: Implications for sustainability of more intensive biomass utilization. Forest Ecology and Management, 311, 17–28. doi: https://doi.org/10.1016/j.foreco.2013.06.029

Monárrez-González, J. C., Pérez-Verdín, G., López-González, C., Márquez-Linares, M. A., & González, E. M. del S. (2018). Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques, 24(2). doi: https://doi.org/10.21829/myb.2018.2421569

Mummey, D. L., Clarke, J. T., Cole, C. A., O’Connor, B. G., Gannon, J. E., & Ramsey, P. W. (2010). Spatial analysis reveals differences in soil microbial community interactions between adjacent coniferous forest and clearcut ecosystems. Soil Biology and Biochemistry, 42(7), 1138–1147. doi: https://doi.org/10.1016/j.soilbio.2010.03.020

Mushinski, R. M., Gentry, T. J., Dorosky, R. J., & Boutton, T. W. (2017). Forest harvest intensity and soil depth alter inorganic nitrogen pool sizes and ammonia oxidizer community composition. Soil Biology and Biochemistry, 112, 216–227. doi: https://doi.org/10.1016/j.soilbio.2017.05.015

Návar-Cháidez, J., & González-Elizondo, M. (2009). Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica, 27, 71–87. Retrieved from http://www.scielo.org.mx/pdf/polib/n27/n27a5.pdf

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2009). Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma, 153(1–2), 231–240. doi: https://doi.org/10.1016/j.geoderma.2009.08.012

Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857–866. doi: https://doi.org/10.1016/j.foreco.2009.12.009

Nilsen, P., & Strand, L. T. (2013). Carbon stores and fluxes in even- and uneven-aged Norway spruce stands. Silva Fennica, 47(4), 1–15. doi: https://doi.org/10.14214/sf.1024

Noormets, A., Epron, D., Domec, J. C., McNulty, S. G., Fox, T., Sun, G., & King, J. S. (2014). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124–140. doi: https://doi.org/10.1016/j.foreco.2015.05.019

Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E., & Ovaskainen, O. (2013). Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. Journal of Ecology, 101(3), 701–712. doi: https://doi.org/10.1111/1365-2745.12085

Powers, J. S., & Marín-Spiotta, E. (2017). Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 48, 497–519. doi: https://doi.org/10.1146/annurev-ecolsys-110316-022944

Pulido-Moncada, M. A., Lobo-Luján, D., & Lozano-Pérez, Z. (2009). Asociación entre indicadores de estabilidad estructural y la materia orgánica en suelos agrícolas de Venezuela. Agrociencia, 43(3), 221–230. Retrieved from http://www.scielo.org.mx/pdf/agro/v43n3/v43n3a1.pdf

Rasche, F., Knapp, D., Kaiser, C., Koranda, M., Kitzler, B., Zechmeister-Boltenstern, S., …Sessitsch, A. (2011). Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME Journal, 5(3), 389–402. doi: https://doi.org/10.1038/ismej.2010.138

Reid, C., & Watmough, S. A. (2014). Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Canadian Journal of Forest Research, 44(8), 867–885. doi: https://doi.org/10.1139/cjfr-2013-0488

Ryan, M. G., Harmon, M. E., Birdsey, R. A., Giardina, C. P., Heath, L. S., Houghton, R. A., … Skog, K. E. (2010). A synthesis of the science on forests and carbon for U.S. Forests. Ecological Society of America: Issues In Ecology, 13, 1–16. Retrieved from https://nicholasinstitute.duke.edu/sites/default/files/publications/publication-science-forest-carbon-united-states-2010.pdf

Saarsalmi, A., Smolander, A., Kukkola, M., Moilanen, M., & Saramäki, J. (2012). 30-Year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. Forest Ecology and Management, 278, 63–70. doi: https://doi.org/10.1016/j.foreco.2012.05.006

Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. doi: https://doi.org/10.1038/nature10386

Scott, D. A., Eaton, R. J., Foote, J. A., Vierra, B., Boutton, T. W., Blank, G. B., & Johnsen, K. (2014). Soil ecosystem services in loblolly pine plantations 15 years after harvest, compaction, and vegetation control. Soil Science Society of America Journal, 78(6), 2032–2040. doi: https://doi.org/10.2136/sssaj2014.02.0086

Seidl, R., Rammer, W., & Spies, T. A. (2014). Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecological Applications, 24(8), 2063–2077. doi: https://doi.org/10.1890/14-0255.1

Shabaga, J. A., Basiliko, N., Caspersen, J. P., & Jones, T. A. (2015). Seasonal controls on patterns of soil respiration and temperature sensitivity in a northern mixed deciduous forest following partial-harvesting. Forest Ecology and Management, 348, 208–219. doi: https://doi.org/10.1016/j.foreco.2015.03.022

Singh, B. K., Quince, C., Macdonald, C. A., Khachane, A., Thomas, N., Al-Soud, W. A., … Campbell, C. D. (2014). Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology, 16(8), 2408–2420. doi: https://doi.org/10.1111/1462-2920.12353

Smith, J., Harvey, B. D., Koubaa, A., Brais, S., & Mazerolle, M. J. (2016). Sprucing up the mixedwoods: Growth response of white spruce (Picea glauca) to partial cutting in the eastern Canadian boreal forest. Canadian Journal of Forest Research, 46(10), 1205–1215. doi: https://doi.org/10.1139/cjfr-2015-0489

Smolander, A., Saarsalmi, A., & Tamminen, P. (2015). Response of soil nutrient content, organic matter characteristics and growth of pine and spruce seedlings to logging residues. Forest Ecology and Management, 357, 117–125. doi: https://doi.org/10.1016/j.foreco.2015.07.019

Smyth, C. E., Titus, B., Trofymow, J. A., Moore, T. R., Preston, C. M., Prescott, C. E., & the CIDET Working Group. (2016). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant and Soil, 409(1–2), 459–477. doi: https://doi.org/10.1007/s11104-016-2972-4

Sørensen, R., Meili, M., Lambertsson, L., von Brömssen, C., & Bishop, K. (2009). The effects of forest harvest operations on mercury and methylmercury in two boreal streams: relatively small changes in the first two years prior to site preparation. Ambio, 38(7), 364–372. doi: https://doi.org/10.1579/0044-7447-38.7.364

Symonds, J., Morris, D. M., & Kwiaton, M. M. (2013). Effect of harvest intensity and soil moisture regime on the decomposition and release of nutrients from needle and twig litter in northwestern Ontario. Boreal Environment Research, 18(5), 401–413. doi: https://doi.org/10.1016/j.foreco.2015.04.034

Tamminen, P., & Saarsalmi, A. (2013). Effects of whole-tree harvesting on growth of pine and spruce seedlings in southern Finland. Scandinavian Journal of Forest Research, 26(6), 559–565. doi: https://doi.org/10.1080/02827581.2013.786124

Tamminen, P., Saarsalmi, A., Smolander, A., Kukkola, M., & Helmisaari, H. S. (2012). Effects of logging residue harvest in thinnings on amounts of soil carbon and nutrients in Scots pine and Norway spruce stands. Forest Ecology and Management, 263, 31–38. doi: https://doi.org/10.1016/j.foreco.2011.09.015

Taylor, A. R., Wang, J. R., & Kurz, W. A. (2008). Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. Forest Ecology and Management, 255(10), 3632–3641. doi: https://doi.org/10.1016/j.foreco.2008.02.052

Thiffault, E., Hannam, K. D., Paré, D., Titus, B. D., Hazlett, P. W., Maynard, D. G., & Brais, S. (2011). Effects of forest biomass harvesting on soil productivity in boreal and temperate forests-A review. Environmental Reviews, 19, 278–309. doi: https://doi.org/10.1139/a11-009

Toivio, J., Helmisaari, H. S., Palviainen, M., Lindeman, H., Ala-Ilomäki, J., Sirén, M., & Uusitalo, J. (2017). Impacts of timber forwarding on physical properties of forest soils in southern Finland. Forest Ecology and Management, 405, 22–30. doi: https://doi.org/10.1016/j.foreco.2017.09.022

Vanguelova, E., Pitman, R., Luiro, J., & Helmisaari, H. S. (2010). Long term effects of whole tree harvesting on soil carbon and nutrient sustainability in the UK. Biogeochemistry, 101(1–3), 43–59. doi: https://doi.org/10.1007/s10533-010-9511-9

Versini, A., Nouvellon, Y., Laclau, J. P., Kinana, A., Mareschal, L., Zeller, B., … Epron, D. (2013). The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical Eucalyptus plantation. Forest Ecology and Management, 301, 79–88. doi: https://doi.org/10.1016/j.foreco.2012.07.045

Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18. doi: https://doi.org/10.1016/j.foreco.2013.01.017

Vicca, S., Luyssaert, S., Peñuelas, J., Campioli, M., Chapin, F. S., Ciais, P., … Janssens, I. A. (2012). Fertile forests produce biomass more efficiently. Ecology Letters, 15(6), 520–526. doi: https://doi.org/10.1111/j.1461-0248.2012.01775.x

Wäldchen, J., Schulze, E. D., Schöning, I., Schrumpf, M., & Sierra, C. (2013). The influence of changes in forest management over the past 200years on present soil organic carbon stocks. Forest Ecology and Management, 289, 243–254. doi: https://doi.org/10.1016/j.foreco.2012.10.014

Wall, A., & Hytönen, J. (2011). The long-term effects of logging residue removal on forest floor nutrient capital, foliar chemistry and growth of a Norway spruce stand. Biomass and Bioenergy, 35(8), 3328–3334. doi: https://doi.org/10.1016/j.biombioe.2010.08.063

Wallace, J., Aquilue, N., Archambault, C., Carpentier, S., Francoeur, X., Greffard, M. H., … Messier, C. (2015). Present forest management structures and policies in temperate forests of Mexico: Challenges and prospects for unique tree species assemblages. Forestry Chronicle, 91(3), 306–317. doi: https://doi.org/10.5558/tfc2015-052

Walmsley, J. D., Jones, D. L., Reynolds, B., Price, M. H., & Healey, J. R. (2009). Whole tree harvesting can reduce second rotation forest productivity. Forest Ecology and Management, 257(3), 1104–1111. doi: https://doi.org/10.1016/j.foreco.2008.11.015

Wardle, D. A., & Jonsson, M. (2014). Long-term resilience of above- and belowground ecosystem components among contrasting ecosystems. Ecology, 95(7), 1836–1849. doi: https://doi.org/10.1890/13-1666.1

Wu, X., Wei, Y., Wang, J., Wang, D., She, L., Wang, J., & Cai, C. (2017). Effects of soil physicochemical properties on aggregate stability along a weathering gradient. CATENA, 156, 205–215. doi: https://doi.org/10.1016/j.catena.2017.04.017

Yesilonis, I., Szlavecz, K., Pouyat, R., Whigham, D., & Xia, L. (2016). Historical land use and stand age effects on forest soil properties in the Mid-Atlantic US. Forest Ecology and Management, 370, 83–92. doi: https://doi.org/10.1016/j.foreco.2016.03.046

Ziche, D., Grüneberg, E., Hilbrig, L., Höhle, J., Kompa, T., Liski, J., … Wellbrock, N. (2019). Comparing soil inventory with modelling: Carbon balance in central European forest soils varies among forest types. Science of the Total Environment, 647, 1573–1585. doi: https://doi.org/10.1016/j.scitotenv.2018.07.327

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente