Revista Chapingo Serie Ciencias Forestales y del Ambiente
Actividad de rizobacterias de Jatropha curcas contra Fusarium verticillioides y Leptoglossus zonatus
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Palabras clave

Actividad antagonista
actividad entomopatógena
Bacillus subtilis
Bacillus mojavensis
Bacillus thuringiensis
Lysinibacillus sphaericus

Cómo citar

Hernández-Guerra, H., Castrejón-Gómez, V. R. ., Velázquez-del Valle, M. G. ., Figueroa-Brito, R. ., Castrejón-Ayala, F., & Hernández-Lauzardo, A. N. (2016). Actividad de rizobacterias de Jatropha curcas contra Fusarium verticillioides y Leptoglossus zonatus. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(3), 255–268. https://doi.org/10.5154/r.rchscfa.2015.05.024

Resumen

El centro de origen y domesticación de Jatropha curcas L. es México. Este cultivo puede ser afectado por diversos hongos fitopatógenos y plagas insectiles que disminuyen la calidad de las semillas. El objetivo de este estudio fue evaluar la actividad antagonista y entomopatógena de bacterias rizosféricas (Bacillus subtilis, B. mojavensis, B. thuringiensis y Lysinibacillus sphaericus) contra Fusarium verticillioides y Leptoglossus zonatus. La actividad antagonista de las rizobacterias se evaluó contra F. verticillioides mediante la técnica de cultivo dual en papa dextrosa agar. Además, se evaluó el efecto de B. thuringiensis y L. sphaericus en la mortalidad y desarrollo de L. zonatus. Los resultados demostraron que las rizobacterias inhibieron el crecimiento micelial (26 a 55 %) y afectaron la morfología hifal de F. verticillioides con independencia del medio y tiempo de cultivo probados. Los mayores porcentajes de inhibición lo causaron B. mojavensis (40.4 a 54 %), L. sphaericus (39.6 a 55 %) y B. subtilis (38.5 a 50 %). Por otra parte, B. thuringiensis y L. sphaericus no mostraron actividad entomopatógena, pues no afectaron la mortalidad ni el desarrollo de L. zonatus.

https://doi.org/10.5154/r.rchscfa.2015.05.024
PDF
ePUB

Citas

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticides. Journal of Economic Entomology, 18, 265-267. doi: https://doi.org/10.1093/jee/18.2.265a

Ahmad, V., Iqbal, A. M. Z., Haseeb, M., & Khan, M. S. (2014). Antimicrobial potential of bacteriocin producing Lysinibacillus jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste. Anaerobe, 27, 87-95. doi: https://doi.org/10.1016/j.anaerobe.2014.04.001

Bacon, C. W., & Hinton, D. M. (2002). Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control, 23, 274-284. doi: https://doi.org/10.1006/bcon.2001.1016

Bacon, C. W., Hinton, D. M., Mitchell, T. R., Snook, M. E., & Olubajo, B. (2012). Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biological Control, 62, 1-9. doi: https://doi.org/10.1016/j.biocontrol.2012.03.006

Basha, S., & Ulaganathan, K. (2002). Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Current Science, 82, 1457-1463. http://www.iisc.ernet.in/currsci/jun252002/1457.pdf

Basili, M., & Fontini, F. (2012). Biofuel from Jatropha curcas: Environmental sustainability and option value. Ecological Economics, 78, 1-8. doi: https://doi.org/10.1016/j.ecolecon.2012.03.010

Baum, J. A., Sukuru, U. R., Penn, S. R., Meyer, S. E., Subbarao, S., Shi, X., ... & Clark, T. L. (2012). Cotton plants expressing a hemipteran-active Bacillus thuringiensis crystal protein impact the development and survival of Lygus hesperus (Hemiptera: Miridae) nymphs. Journal of Economic Entomology, 105, 616-624. doi: https://doi.org/10.1603/EC11207

Becker, K., Wulfmeyer, V., Berger, T., Gebel, J., & Münch, W. (2013). Carbon farming in hot, dry coastal areas: An option for climate change mitigation. Earth System Dynamics, 4, 237-251. doi: https://doi.org/10.5194/esd-4-237-2013

Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 1044-1051. doi: https://doi.org/10.1590/S1415-47572012000600020

Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109, 1-10. doi: https://doi.org/10.1016/j.jip.2011.11.008

Chérif, M., Sadfi, N., Benhamou, N., Boudabbous, A., Boubaker, A., Hajlaoui, M. R., & Tirilly, Y. (2002). Ultrastructure and cytochemistry of in vitro interactions of the antagonistic bacteria Bacillus cereus X16 and B. thuringiensis 55T with Fusarium roseum var. sambucinum. Journal of Plant Pathology, 84, 83-93. doi: https://doi.org/10.4454/jpp.v84i2.1091

Dharmaputra, O. S., Worang, R. L., Syarief, R., & Tahudin, M. (2009). The quality of physic nut (Jatropha curcas) seed affected by water activity and duration of storage. Microbiology Indonesia, 3, 139-145. http://jurnal.permi.or.id/index.php/mionline/article/view/138/15

Dias, L. A. S., Missio, R. F., & Dias, D. C. F. S. (2012). Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genetics and Molecular Research, 11, 2719-2728. doi: https://doi.org/10.4238/2012.June.25.6

Dussán, J. G., Andrade, D. R. L., Lozano, L. C. A., Vanegas, S. P. M. (2002). Physiologic and genetic characterization of Bacillus sphaericus native strains. Revista Colombiana de Biotecnología, 4, 89-99. http://www.revistas.unal.edu.co/index.php/biotecnologia/article/view/30097/30289

Fresnedo-Ramírez, J., & Orozco-Ramírez, Q. (2013). Diversity and distribution of genus Jatropha in Mexico. Genetic Resources and Crop Evolution, 60, 1087-1104. doi: https://doi.org/10.1007/s10722-012-9906-7

Grimm, C., & Somarriba, A. (1999). Suitability of physic nut (Jatropha curcas L.) as single host plant for the leaf-footed bug Leptoglossus zonatus Dallas (Het., Coreidae). Journal of Applied Entomology, 123, 347-350. doi: https://doi.org/10.1046/j.1439-0418.1999.00380

Guo, Z., Chen, R., Xing, R., Liu, S., Yu, H., Wang, P., …Li, P. (2006). Novel derivarives of chitosan and their antifungal activities in vitro. Carbohydrate Research, 341(3), 351-354. doi: https://doi.org/10.1016/j.carres.2005.11.002

Jha, C. K., Patel, D., & Saraf, M. (2012). Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 28, 891- 899. doi: https://doi.org/10.1007/s11274-011-0886-0

Latha, P., Anand, T., Prakasam, V., Jonathan, E. I., Paramathma, M., & Samiyappan, R. (2011). Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut. Applied Soil Ecology, 49, 215-223. doi: https://doi.org/10.1016/j.apsoil.2011.05.003

McPherson, J. E., Packauskas, R. J., Taylor, S. J., & O´Brien, M. F. (1990). Eastern range extension of Leptoglossus occidentalis with a key to Leptoglossus species of America North of Mexico (Heteroptera: Coreidae). Great Lakes Entomology, 23, 99-104.

Patel, D., & Saraf, M. (2013). Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. European Journal of Soil Biology, 55, 47-54. doi: https://doi.org/10.1016/j.ejsobi.2012.12.004

Poopathi, S., Mani, C., Thirugnanasambantham, K., Praba, V. L., Ahangar, N. A., & Balagangakharan, K. (2014). Identification and characterization of a novel marine Bacillus cereus for mosquito control. Parasitology Research, 113, 323-332. doi: https://doi.org/10.1007/s00436-013-3658-y

Rocha, L. O., Tralamazza, S. M., Reis, G. M., Rabinovitch, L., Barbosa, C. B., & Corrêa, B. (2014). Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis Subsp. Kurstaki. PloS ONE, 9(4), e92189. doi: https://doi.org/10.1371/journal.pone.0092189

Schünemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology, 2014, Article ID 135675. doi: https://doi.org/10.1155/2014/135675

SigmaPlot. (2008). SigmaPlot. Exact graphs for exact sciences, V.11.0. Point Richmond, CA, USA: Systat Software Inc.

Stockhoff, B., & Conlan, C. (2003). Control de plagas de insectos hemípteros con Bacillus thuringiensis. España: ES Patente núm. 2194108T3. 16-11-2003. http://www.espatentes.com/pdf/2194108_t3.pdf

Tepole-García, R. E., Pineda-Guillermo, S., Martínez-Herrera, J., & Castrejón-Gómez, V. R. (2012). Records of two pest species, Leptoglossus zonatus (Heteroptera: Coreidae) and Pachycoris klugii (Heteroptera: Scutelleridae), feeding on the physic nut, Jatropha curcas, in Mexico. Florida Entomology, 95, 208-210. doi: https://doi.org/10.1653/024.095.0135

Terren, M., Mignon, J., Declerck, C., Jijakli, H., Savery, S., Jacquet de Haveskercke, …Mergeai, G. (2012). Principal disease and insect pest of Jatropha curcas L. in the lower valley of the Senegal River. Tropicultura, 30, 222-229. http://www.tropicultura.org/text/v30n4/222.pdf

Van Rooijen, L. W. (2014). Pioneering in marginal fields: Jatropha for carbon credits and restoring degraded land in Eastern Indonesia. Sustainability, 6, 2223-2247. doi: https://doi.org/10.3390/su6042223

Wani, S. P., Chander, G., Sahrawat, K. L., Srinivasa-Rao, Ch., Raghvendra, G., Susanna, P., & Pavani, M. (2012). Carbon sequestration and land rehabilitation through Jatropha curcas L. plantation in degraded lands. Agriculture, Ecosystems and Environment, 161, 112- 120. doi: https://doi.org/10.1016/j.agee.2012.07.028

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente