Revista Chapingo Serie Ciencias Forestales y del Ambiente
Activity of rhizobacteria of Jatropha curcas against Fusarium verticillioides and Leptoglossus zonatus
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Keywords

Antagonistic activity
entomopathogenic activity
Bacillus subtilis
Bacillus mojavensis
Bacillus thuringiensis
Lysinibacillus

How to Cite

Hernández-Guerra, H., Castrejón-Gómez, V. R. ., Velázquez-del Valle, M. G. ., Figueroa-Brito, R. ., Castrejón-Ayala, F., & Hernández-Lauzardo, A. N. (2016). Activity of rhizobacteria of Jatropha curcas against Fusarium verticillioides and Leptoglossus zonatus. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(3), 255–268. https://doi.org/10.5154/r.rchscfa.2015.05.024

Abstract

The center of origin and domestication of Jatropha curcas L. is Mexico. This crop can be affected by several phytopathogenic fungi and insect pests that diminish the quality of the seeds. The aim of this study was to evaluate the antagonistic and enthomopathogenic activity of rhizospheric bacteria (B. subtilis, B. mojavensis, B. thuringiensis and Lysinibacillus sphaericus) against Fusarium verticillioides and Leptoglossus zonatus. The antagonistic activity of rhizobacteria was evaluated against F. verticillioides by dual culture technique on potato dextrose agar. Moreover, the effect of B. thuringiensis and L. sphaericus was evaluated on the mortality and development of L. zonatus. The results demonstrated that rhizobacteria inhibited the mycelial growth (26 to 55 %) and affected the hyphal morphology of F. verticillioides regardless of the culture medium and cultivation time tested. B. mojavensis (40.4 to 54 %), L. sphaericus (39.6 to 55 %) and B. subtilis (38.5 to 50%) caused the highest percentages of inhibition. On the other hand, B. thuringiensis and L. sphaericus showed no enthomopathogenic activity because they did not affect the mortality or development of L. zonatus.

https://doi.org/10.5154/r.rchscfa.2015.05.024
PDF
ePUB

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticides. Journal of Economic Entomology, 18, 265-267. doi: https://doi.org/10.1093/jee/18.2.265a

Ahmad, V., Iqbal, A. M. Z., Haseeb, M., & Khan, M. S. (2014). Antimicrobial potential of bacteriocin producing Lysinibacillus jx416856 against foodborne bacterial and fungal pathogens, isolated from fruits and vegetable waste. Anaerobe, 27, 87-95. doi: https://doi.org/10.1016/j.anaerobe.2014.04.001

Bacon, C. W., & Hinton, D. M. (2002). Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control, 23, 274-284. doi: https://doi.org/10.1006/bcon.2001.1016

Bacon, C. W., Hinton, D. M., Mitchell, T. R., Snook, M. E., & Olubajo, B. (2012). Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biological Control, 62, 1-9. doi: https://doi.org/10.1016/j.biocontrol.2012.03.006

Basha, S., & Ulaganathan, K. (2002). Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Current Science, 82, 1457-1463. http://www.iisc.ernet.in/currsci/jun252002/1457.pdf

Basili, M., & Fontini, F. (2012). Biofuel from Jatropha curcas: Environmental sustainability and option value. Ecological Economics, 78, 1-8. doi: https://doi.org/10.1016/j.ecolecon.2012.03.010

Baum, J. A., Sukuru, U. R., Penn, S. R., Meyer, S. E., Subbarao, S., Shi, X., ... & Clark, T. L. (2012). Cotton plants expressing a hemipteran-active Bacillus thuringiensis crystal protein impact the development and survival of Lygus hesperus (Hemiptera: Miridae) nymphs. Journal of Economic Entomology, 105, 616-624. doi: https://doi.org/10.1603/EC11207

Becker, K., Wulfmeyer, V., Berger, T., Gebel, J., & Münch, W. (2013). Carbon farming in hot, dry coastal areas: An option for climate change mitigation. Earth System Dynamics, 4, 237-251. doi: https://doi.org/10.5194/esd-4-237-2013

Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 1044-1051. doi: https://doi.org/10.1590/S1415-47572012000600020

Berry, C. (2012). The bacterium, Lysinibacillus sphaericus, as an insect pathogen. Journal of Invertebrate Pathology, 109, 1-10. doi: https://doi.org/10.1016/j.jip.2011.11.008

Chérif, M., Sadfi, N., Benhamou, N., Boudabbous, A., Boubaker, A., Hajlaoui, M. R., & Tirilly, Y. (2002). Ultrastructure and cytochemistry of in vitro interactions of the antagonistic bacteria Bacillus cereus X16 and B. thuringiensis 55T with Fusarium roseum var. sambucinum. Journal of Plant Pathology, 84, 83-93. doi: https://doi.org/10.4454/jpp.v84i2.1091

Dharmaputra, O. S., Worang, R. L., Syarief, R., & Tahudin, M. (2009). The quality of physic nut (Jatropha curcas) seed affected by water activity and duration of storage. Microbiology Indonesia, 3, 139-145. http://jurnal.permi.or.id/index.php/mionline/article/view/138/15

Dias, L. A. S., Missio, R. F., & Dias, D. C. F. S. (2012). Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genetics and Molecular Research, 11, 2719-2728. doi: https://doi.org/10.4238/2012.June.25.6

Dussán, J. G., Andrade, D. R. L., Lozano, L. C. A., Vanegas, S. P. M. (2002). Physiologic and genetic characterization of Bacillus sphaericus native strains. Revista Colombiana de Biotecnología, 4, 89-99. http://www.revistas.unal.edu.co/index.php/biotecnologia/article/view/30097/30289

Fresnedo-Ramírez, J., & Orozco-Ramírez, Q. (2013). Diversity and distribution of genus Jatropha in Mexico. Genetic Resources and Crop Evolution, 60, 1087-1104. doi: https://doi.org/10.1007/s10722-012-9906-7

Grimm, C., & Somarriba, A. (1999). Suitability of physic nut (Jatropha curcas L.) as single host plant for the leaf-footed bug Leptoglossus zonatus Dallas (Het., Coreidae). Journal of Applied Entomology, 123, 347-350. doi: https://doi.org/10.1046/j.1439-0418.1999.00380

Guo, Z., Chen, R., Xing, R., Liu, S., Yu, H., Wang, P., …Li, P. (2006). Novel derivarives of chitosan and their antifungal activities in vitro. Carbohydrate Research, 341(3), 351-354. doi: https://doi.org/10.1016/j.carres.2005.11.002

Jha, C. K., Patel, D., & Saraf, M. (2012). Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World Journal of Microbiology and Biotechnology, 28, 891- 899. doi: https://doi.org/10.1007/s11274-011-0886-0

Latha, P., Anand, T., Prakasam, V., Jonathan, E. I., Paramathma, M., & Samiyappan, R. (2011). Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut. Applied Soil Ecology, 49, 215-223. doi: https://doi.org/10.1016/j.apsoil.2011.05.003

McPherson, J. E., Packauskas, R. J., Taylor, S. J., & O´Brien, M. F. (1990). Eastern range extension of Leptoglossus occidentalis with a key to Leptoglossus species of America North of Mexico (Heteroptera: Coreidae). Great Lakes Entomology, 23, 99-104.

Patel, D., & Saraf, M. (2013). Influence of soil ameliorants and microflora on induction of antioxidant enzymes and growth promotion of Jatropha curcas L. under saline condition. European Journal of Soil Biology, 55, 47-54. doi: https://doi.org/10.1016/j.ejsobi.2012.12.004

Poopathi, S., Mani, C., Thirugnanasambantham, K., Praba, V. L., Ahangar, N. A., & Balagangakharan, K. (2014). Identification and characterization of a novel marine Bacillus cereus for mosquito control. Parasitology Research, 113, 323-332. doi: https://doi.org/10.1007/s00436-013-3658-y

Rocha, L. O., Tralamazza, S. M., Reis, G. M., Rabinovitch, L., Barbosa, C. B., & Corrêa, B. (2014). Multi-method approach for characterizing the interaction between Fusarium verticillioides and Bacillus thuringiensis Subsp. Kurstaki. PloS ONE, 9(4), e92189. doi: https://doi.org/10.1371/journal.pone.0092189

Schünemann, R., Knaak, N., & Fiuza, L. M. (2014). Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology, 2014, Article ID 135675. doi: https://doi.org/10.1155/2014/135675

SigmaPlot. (2008). SigmaPlot. Exact graphs for exact sciences, V.11.0. Point Richmond, CA, USA: Systat Software Inc.

Stockhoff, B., & Conlan, C. (2003). Control de plagas de insectos hemípteros con Bacillus thuringiensis. España: ES Patente núm. 2194108T3. 16-11-2003. http://www.espatentes.com/pdf/2194108_t3.pdf

Tepole-García, R. E., Pineda-Guillermo, S., Martínez-Herrera, J., & Castrejón-Gómez, V. R. (2012). Records of two pest species, Leptoglossus zonatus (Heteroptera: Coreidae) and Pachycoris klugii (Heteroptera: Scutelleridae), feeding on the physic nut, Jatropha curcas, in Mexico. Florida Entomology, 95, 208-210. doi: https://doi.org/10.1653/024.095.0135

Terren, M., Mignon, J., Declerck, C., Jijakli, H., Savery, S., Jacquet de Haveskercke, …Mergeai, G. (2012). Principal disease and insect pest of Jatropha curcas L. in the lower valley of the Senegal River. Tropicultura, 30, 222-229. http://www.tropicultura.org/text/v30n4/222.pdf

Van Rooijen, L. W. (2014). Pioneering in marginal fields: Jatropha for carbon credits and restoring degraded land in Eastern Indonesia. Sustainability, 6, 2223-2247. doi: https://doi.org/10.3390/su6042223

Wani, S. P., Chander, G., Sahrawat, K. L., Srinivasa-Rao, Ch., Raghvendra, G., Susanna, P., & Pavani, M. (2012). Carbon sequestration and land rehabilitation through Jatropha curcas L. plantation in degraded lands. Agriculture, Ecosystems and Environment, 161, 112- 120. doi: https://doi.org/10.1016/j.agee.2012.07.028

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente