Revista Chapingo Serie Ciencias Forestales y del Ambiente
MEDICIÓN Y ESTIMACIÓN DEL AMBIENTE LUMÍNICO EN EL INTERIOR DEL BOSQUE. UNA REVISIÓN
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Radiación solar
luz
medición directa
estimación indirecta
ambiente bajo el dosel arbóreo

Cómo citar

Promis , Álvaro . (2013). MEDICIÓN Y ESTIMACIÓN DEL AMBIENTE LUMÍNICO EN EL INTERIOR DEL BOSQUE. UNA REVISIÓN. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 19(1), 139–146. https://doi.org/10.5154/r.rchscfa.2012.02.014

##article.highlights##

  • Alta variabilidad de la transmisión de la radiación solar en el bosque
  • Medición de la radiación solar bajo el dosel
  • Estimación de la radiación solar bajo el dosel

Resumen

El ambiente lumínico en el interior de un bosque influye en la supervivencia y crecimiento de las plántulas de especies arbóreas y en el desarrollo de las plantas del sotobosque. Por este motivo, existe mucho interés en medir el ambiente lumínico bajo el dosel de copas. Varios métodos, técnicas e instrumentos se han desarrollado para medir directamente o estimar indirectamente el ambiente lumínico en el interior del bosque. También se han realizado varios estudios que comparan la eficiencia de ambos métodos (directos e indirectos). En esta revisión se describen varios instrumentos, técnicas y metodologías para estimar el ambiente lumínico, indicando la naturaleza y propiedades de cada uno de ellos, como apoyo para la elección del equipamiento necesario y así responder a las necesidades del investigador en este tema.

https://doi.org/10.5154/r.rchscfa.2012.02.014
PDF

Citas

Balandier, P., Sonohat, G., Sinoquet, H., Verlet-Grancher, C., & Dumas, Y. (2006). Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercus petraea, Q. robur) stands. Trees, 20, 363–370. doi: https://doi.org/10.1007/s00468-006-0049-3

Baldocchi, D., & Collineau, S. (1994). The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes. In M. M. Caldwell, & R. W. Pearcy (Eds.), Exploitation of environmental heterogeneity by plants (pp. 21–71). San Diego: Academic Press.

Bellow, J. G., & Nair, P. K. R. (2003). Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agricultural and Forest Meteorology, 114, 197–211. doi: https://doi.org/10.1016/s0168-1923(02)00173-9

Brown, N., Jennings, S., Wheeler, P., & Nabe-Nielsen, N. (2000). An improved method for the rapid assessment of forest understorey light environments. Journal of Applied Ecology, 37, 1044–1053. doi: https://doi.org/10.1046/j.1365-2664.2000.00573.x

Chazdon, R. L., & Field, C. B. (1987). Photographic estimation of photosynthetically active radiation: Evaluation of a computerized technique. Oecologia, 73, 525–532. doi: https://doi.org/10.1007/BF00379411

Clearwater, M. J., Nifinluri, T., & Van Gardingen, P. R. (1999). Forest fire smoke and a test of hemispherical photography for predicting understory light in Bornean tropical rain forest. Agricultural and Forest Meteorology, 97, 129–139. doi: https://doi.org/10.1016/S0168-1923(99)00058-1

Comeau, P. (2000). Measuring light in the forest (Extension Note 42). Victoria, Canada: B. C. Ministry of Forests.

Comeau, P., Fielder, P., MacDonald, R., & Bryce, R. (2012). LITE and SLIM programs for estimating light levels beneath tree canopies. http://www.ualberta.ca/~pcomeau/Light_Modeling/Lite_and_slim_intro.html

Comeau, P., Gendron, F., & Letchford, T. (1998). A comparison of several methods for estimating light under a paper birch mixed wood stand. Canadian Journal of Forest Research, 28, 1843–1850. doi: https://doi.org/10.1139/x98-159

Comeau, P. G., & Heineman, J. L. (2003). Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands. Forest Ecology and Management, 180, 303–315. doi: https://doi.org/10.1016/S0378-1127(02)00581-9

Duchoslav, M. (2009). Effects of contrasting habitats on the phenology, seasonal growth, and dry-mass allocation pattern of two bulbous geophytes (Alliaceae) with partly different geographic ranges. Polish Journal of Ecology, 57, 15–32. http://www.pol.j.ecol.cbe-pan.pl/article/ar57_1_02.pdf

Engelbrecht, B. M., & Herz, H. M. (2001). Evaluation of different methods to estimate understorey light conditions in tropical forests. Journal of Tropical Ecology, 17, 207–224. doi: https://doi.org/10.1017/S0266467401001146

Geiger, R., Aron, R. H., & Todhunter, P. (2003). The climate near the ground (6a ed.). Maryland, USA: Rowman y Littlefield Publishers, Inc.

González-Tagle, M. A., Jiménez-Pérez, J., & Himmelsbach, W. (2011). Impact of firewood extraction on leaf area index and canopy openness in mixed pine-oak forests in northeast Mexico. Forstarchiv, 82, 20–25. doi: https://doi.org/10.2376/0300-4112-81-20

Grant, R. H. (1997). Partitioning of biologically active radiation in plant canopies. International Journal of Biometeorology, 40, 26–40. doi: https://doi.org/10.1007/BF02439408

Hale, S. E., & Brown, N. (2005). Use of the canopy-scope for assessing canopy openness in plantation forests. Forestry, 78, 365–371. doi: https://doi.org/10.1093/forestry/cpi043

Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry, 72, 59–73. doi: https://doi.org/10.1093/forestry/72.1.59

Kimmins, J. P. (1987). Forest ecology. A foundation for sustainable management (2a ed.). New Jersey, USA: Prentice Hall.

Klassen, S., & Bugbee, B. (2005). Shortwave radiation. In J. L. Hatfield, & J. M. Baker (Eds.), Micrometeorology in agricultural systems (pp. 43–57). Madison, USA: American Society of Agronomy, Inc.

Lieffers, V. J., Messier, C., Stadt, K. J., Gendron, F., & Comeau, P. G. (1999). Predicting and managing light in the understory of boreal forests. Canadian Journal of Forest Research, 29, 796–811. doi: https://doi.org/10.1139/x98-165

Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics (2a ed.). London, UK: Edward Arnold.

Newton, A. C. (2007). Forest ecology and conservation. A handbook of techniques. Oxford, UK: University Press.

Promis, A., Caldentey, J., & Cruz, G. (2012). Evaluating the usefulness of hemispherical photographs as a means to estimate photosynthetic photon flux density during a growing season in the understorey of Nothofagus pumilio forests. Plant Biosystems, 146, 237–243. doi: https://doi.org/10.1080/11263504.2011.650727

Promis, A., Gärtner, S., Butler-Manning, D., Durán-Rengel, C., Reif, A., Cruz, G., & Hernández, L. (2011). Comparison of four different programs for the analysis of hemispherical photographs using parameters of canopy structure and solar radiation transmittance. Waldökologie, Landschaftsforschung und Naturschutz, 11, 19–33.

Promis, A., Schindler, D., Reif, A., & Cruz, G. (2009). Solar radiation transmission in and around canopy gaps in an unevenaged Nothofagus betuloides forest. International Journal of Biometeorology, 53, 355–367. doi: https://doi.org/10.1007/s00484-009-0222-7

Rich, P. M., Clark, D. B., Clark, D. A., & Oberbauer, S. F. (1993). Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agricultural and Forest Meteorology, 65, 107– 127. doi: https://doi.org/10.1016/0168-1923(93)90040-O

Roxburgh, J. R., & Kelly, D. (1995). Uses and limitations of hemispherical photography for estimating forest light environments. New Zealand Journal of Ecology, 19, 213– 217. http://www.newzealandecology.org/nzje/free_issues/NZJEcol19_2_213.pdf

Stadt, K. J., & Lieffers, V. J. (2000). MIXLIGHT: A flexible light transmission model for mixed-species forest stands. Agricultural and Forest Meteorology, 102, 235–252. doi: https://doi.org/10.1016/S0168-1923(00)00128-3

Strachan, I. B., Stewart, D. W., & Pattey, E. (2005). Determination of leaf area index in agricultural systems. In J. L. Hatfield, & J. M. Baker (Eds.), Micrometeorology in agricultural systems (pp. 179–198). Madison, USA: American Society of Agronomy, Inc.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2013 Revista Chapingo Serie Ciencias Forestales y del Ambiente