Revista Chapingo Serie Ciencias Forestales y del Ambiente
MEASURING AND ESTIMATING THE BELOW-CANOPY LIGHT ENVIRONMENT IN A FOREST. A REVIEW
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Solar radiation
light
direct measurement
indirect estimation
below-canopy environment.

How to Cite

Promis , Álvaro . (2013). MEASURING AND ESTIMATING THE BELOW-CANOPY LIGHT ENVIRONMENT IN A FOREST. A REVIEW. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 19(1), 139–146. https://doi.org/10.5154/r.rchscfa.2012.02.014

##article.highlights##

  • High variability of the transmission of solar radiation into the forest
  • Measuring below-canopy solar radiation
  • Estimating below-canopy solar radiation

Abstract

The below-canopy light environment influences the survival, the tree regeneration growth and the development of the understory plant species. Therefore, there has been much interest in measuring the below-canopy light environment. Several instruments, techniques and methods have been developed to measure directly or to estimate indirectly the below-canopy light environment. To date, many comparisons of direct and indirect methods for the measuring and estimation of below-canopy light environment have been conducted in order to determine the best way to measure the light in the understory. In this review a scientific description of the currently instruments, techniques and methods used to measure or to estimate the below-canopy solar radiation is shown. The nature and properties of the different methods, techniques and instruments are commented. Finally, the choice of equipment to meet the needs of the researcher in this topic is supported.

https://doi.org/10.5154/r.rchscfa.2012.02.014
PDF

References

Balandier, P., Sonohat, G., Sinoquet, H., Verlet-Grancher, C., & Dumas, Y. (2006). Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercus petraea, Q. robur) stands. Trees, 20, 363–370. doi: https://doi.org/10.1007/s00468-006-0049-3

Baldocchi, D., & Collineau, S. (1994). The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes. In M. M. Caldwell, & R. W. Pearcy (Eds.), Exploitation of environmental heterogeneity by plants (pp. 21–71). San Diego: Academic Press.

Bellow, J. G., & Nair, P. K. R. (2003). Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agricultural and Forest Meteorology, 114, 197–211. doi: https://doi.org/10.1016/s0168-1923(02)00173-9

Brown, N., Jennings, S., Wheeler, P., & Nabe-Nielsen, N. (2000). An improved method for the rapid assessment of forest understorey light environments. Journal of Applied Ecology, 37, 1044–1053. doi: https://doi.org/10.1046/j.1365-2664.2000.00573.x

Chazdon, R. L., & Field, C. B. (1987). Photographic estimation of photosynthetically active radiation: Evaluation of a computerized technique. Oecologia, 73, 525–532. doi: https://doi.org/10.1007/BF00379411

Clearwater, M. J., Nifinluri, T., & Van Gardingen, P. R. (1999). Forest fire smoke and a test of hemispherical photography for predicting understory light in Bornean tropical rain forest. Agricultural and Forest Meteorology, 97, 129–139. doi: https://doi.org/10.1016/S0168-1923(99)00058-1

Comeau, P. (2000). Measuring light in the forest (Extension Note 42). Victoria, Canada: B. C. Ministry of Forests.

Comeau, P., Fielder, P., MacDonald, R., & Bryce, R. (2012). LITE and SLIM programs for estimating light levels beneath tree canopies. http://www.ualberta.ca/~pcomeau/Light_Modeling/Lite_and_slim_intro.html

Comeau, P., Gendron, F., & Letchford, T. (1998). A comparison of several methods for estimating light under a paper birch mixed wood stand. Canadian Journal of Forest Research, 28, 1843–1850. doi: https://doi.org/10.1139/x98-159

Comeau, P. G., & Heineman, J. L. (2003). Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands. Forest Ecology and Management, 180, 303–315. doi: https://doi.org/10.1016/S0378-1127(02)00581-9

Duchoslav, M. (2009). Effects of contrasting habitats on the phenology, seasonal growth, and dry-mass allocation pattern of two bulbous geophytes (Alliaceae) with partly different geographic ranges. Polish Journal of Ecology, 57, 15–32. http://www.pol.j.ecol.cbe-pan.pl/article/ar57_1_02.pdf

Engelbrecht, B. M., & Herz, H. M. (2001). Evaluation of different methods to estimate understorey light conditions in tropical forests. Journal of Tropical Ecology, 17, 207–224. doi: https://doi.org/10.1017/S0266467401001146

Geiger, R., Aron, R. H., & Todhunter, P. (2003). The climate near the ground (6a ed.). Maryland, USA: Rowman y Littlefield Publishers, Inc.

González-Tagle, M. A., Jiménez-Pérez, J., & Himmelsbach, W. (2011). Impact of firewood extraction on leaf area index and canopy openness in mixed pine-oak forests in northeast Mexico. Forstarchiv, 82, 20–25. doi: https://doi.org/10.2376/0300-4112-81-20

Grant, R. H. (1997). Partitioning of biologically active radiation in plant canopies. International Journal of Biometeorology, 40, 26–40. doi: https://doi.org/10.1007/BF02439408

Hale, S. E., & Brown, N. (2005). Use of the canopy-scope for assessing canopy openness in plantation forests. Forestry, 78, 365–371. doi: https://doi.org/10.1093/forestry/cpi043

Jennings, S. B., Brown, N. D., & Sheil, D. (1999). Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry, 72, 59–73. doi: https://doi.org/10.1093/forestry/72.1.59

Kimmins, J. P. (1987). Forest ecology. A foundation for sustainable management (2a ed.). New Jersey, USA: Prentice Hall.

Klassen, S., & Bugbee, B. (2005). Shortwave radiation. In J. L. Hatfield, & J. M. Baker (Eds.), Micrometeorology in agricultural systems (pp. 43–57). Madison, USA: American Society of Agronomy, Inc.

Lieffers, V. J., Messier, C., Stadt, K. J., Gendron, F., & Comeau, P. G. (1999). Predicting and managing light in the understory of boreal forests. Canadian Journal of Forest Research, 29, 796–811. doi: https://doi.org/10.1139/x98-165

Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics (2a ed.). London, UK: Edward Arnold.

Newton, A. C. (2007). Forest ecology and conservation. A handbook of techniques. Oxford, UK: University Press.

Promis, A., Caldentey, J., & Cruz, G. (2012). Evaluating the usefulness of hemispherical photographs as a means to estimate photosynthetic photon flux density during a growing season in the understorey of Nothofagus pumilio forests. Plant Biosystems, 146, 237–243. doi: https://doi.org/10.1080/11263504.2011.650727

Promis, A., Gärtner, S., Butler-Manning, D., Durán-Rengel, C., Reif, A., Cruz, G., & Hernández, L. (2011). Comparison of four different programs for the analysis of hemispherical photographs using parameters of canopy structure and solar radiation transmittance. Waldökologie, Landschaftsforschung und Naturschutz, 11, 19–33.

Promis, A., Schindler, D., Reif, A., & Cruz, G. (2009). Solar radiation transmission in and around canopy gaps in an unevenaged Nothofagus betuloides forest. International Journal of Biometeorology, 53, 355–367. doi: https://doi.org/10.1007/s00484-009-0222-7

Rich, P. M., Clark, D. B., Clark, D. A., & Oberbauer, S. F. (1993). Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agricultural and Forest Meteorology, 65, 107– 127. doi: https://doi.org/10.1016/0168-1923(93)90040-O

Roxburgh, J. R., & Kelly, D. (1995). Uses and limitations of hemispherical photography for estimating forest light environments. New Zealand Journal of Ecology, 19, 213– 217. http://www.newzealandecology.org/nzje/free_issues/NZJEcol19_2_213.pdf

Stadt, K. J., & Lieffers, V. J. (2000). MIXLIGHT: A flexible light transmission model for mixed-species forest stands. Agricultural and Forest Meteorology, 102, 235–252. doi: https://doi.org/10.1016/S0168-1923(00)00128-3

Strachan, I. B., Stewart, D. W., & Pattey, E. (2005). Determination of leaf area index in agricultural systems. In J. L. Hatfield, & J. M. Baker (Eds.), Micrometeorology in agricultural systems (pp. 179–198). Madison, USA: American Society of Agronomy, Inc.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 Revista Chapingo Serie Ciencias Forestales y del Ambiente