Current Topics in Agronomic Science
Harina de gusano blanco de maguey: potencial nutricional y tecno-funcional para el desarrollo de alimentos
ISSNe: 2954-4440
PDF - English
PDF - Spanish

Palabras clave

Aegiale hesperiaris
insectos comestibles
harina
proteínas
tecno-funcionalidad

Cómo citar

Garrido Ortiz, E. R., & Morales Camacho, J. I. (2025). Harina de gusano blanco de maguey: potencial nutricional y tecno-funcional para el desarrollo de alimentos. Current Topics in Agronomic Science, 5, e2509. https://doi.org/10.5154/r.ctasci.2025.05.09

Resumen

El presente estudio evalúa el potencial nutricional y tecno-funcional de la harina de Aegiale hesperiaris (gusano blanco de maguey), una especie endémica y tradicionalmente consumida en México. Las larvas fueron recolectadas manualmente,
liofilizadas y procesadas para obtener harinas no desgrasada y desgrasada. Se determinó la composición proximal en base seca, empleando un factor de conversión de nitrógeno a proteína de 4.76 para evitar sobreestimaciones. Asimismo, se evaluaron propiedades funcionales como capacidad de retención de agua y aceite, capacidad y estabilidad emulsionante, formación y estabilidad de espuma, y solubilidad proteica en función del pH. La harina desgrasada presentó mayor capacidad de retención de agua (2.82 g·g-1) y aceite (2.82 g·g-1), así como mejores propiedades emulsionantes (CE: 60.83 %, Ee: 89.36 %). En contraste, la harina no desgrasada mostró superior capacidad espumante. La solubilidad proteica fue mayor en la harina desgrasada en todo el rango de pH evaluado, con un valor máximo de 95.82 % a pH 12. Estos resultados sugieren que el desgrasado mejora la funcionalidad de la harina para su aplicación en alimentos procesados. En ese sentido, la harina de A. hesperiaris posee un perfil nutricional adecuado y propiedades funcionales versátiles, lo que respalda su potencial como ingrediente alternativo en productos alimentarios innovadores y sostenibles.

https://doi.org/10.5154/r.ctasci.2025.05.09
PDF - English
PDF - Spanish

Citas

AOAC International. (2012). Official Methods of Analysis (19ª ed.). Gaithersburg, MD: AOAC International

Abril, S., Pinzón, M., Hernández-Carrión, M., & Sánchez-Camargo, A. del P. (2022). Edible Insects in Latin America: A Sustainable Alternative for Our Food Security. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.904812

Belluco, S., Bertola, M., Montarsi, F., Di Martino, G., Granato, A., Stella, R., Martinello, M., Bordin, F., & Mutinelli, F. (2023). Insects and Public Health: An Overview. Insects, 14(3), Article 3. https://doi.org/10.3390/insects14030240

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M., & Schlüter, O. K. (2016). Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2(12). https://doi.org/10.1016/j.heliyon.2016.e00218

Cortazar-Moya, S., Mejía-Garibay, B., López-Malo, A., & Morales-Camacho, J. I. (2023). Nutritional composition and techno-functionality of non-defatted and defatted flour of edible insect Arsenura armida. Food Research International, 173, 113445. https://doi.org/10.1016/j.foodres.2023.113445

Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N. M., Murta, D., Nunes, R.,

& Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS Journal, 21, 57–64. https://doi.org/10.1016/j.nfs.2020.10.001

Devi, W. D., Bonysana, R., Kapesa, K., Rai, A. K., Mukherjee, P. K., & Rajashekar, Y. (2022). Potential of edible insects as source of functional foods: Biotechnological approaches for

improving functionality. Systems Microbiology and Biomanufacturing, 2(3), 461–472. https://doi.org/10.1007/s43393-022-00089-5

Escamilla-Rosales, M. F., Castañeda-Antonio, D., Ramos-Cassellis, M. E., López-Contreras, L., Ramírez-Moreno, E., Del S. Cruz-Cansino, N., Vargas-Bello-Pérez, E., Betanzos-Cabrera, G., Díaz-Reyes, J., & Ariza-Ortega, J. A. (2022). Effect of dehydration and butter-frying on chinicuil (Comadia redtenbacheri Hammershmidt) and maguey white worm (Aegiale hesperiaris Walker). Journal of Insects as Food and Feed, 8(1), 75–84. https://doi.org/10.3920/JIFF2020.0154

FAO, F., & A. O. of the U. N. (2013). The Contribution of Insects to Food Security, Livelihoods and the Environment. FAO. https://www.fao.org/fsnforum/resources/reports-and-briefs/contribution-insects-food-security-livelihoods-and-environment

Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278. https://doi.org/10.1021/acs.jafc.7b00471

Jeong, M. S., Lee, S. D., & Cho, S. J. (2021). Effect of Three Defatting Solvents on the Techno- Functional Properties of an Edible Insect (Gryllus bimaculatus) Protein Concentrate. Molecules, 26(17), Article 17. https://doi.org/10.3390/molecules26175307

Khan, M., Hsu, P. C., Roy, M., Khan, Z., Sharma, R., & Srivastava, H. (2020). Insects as a source of food for human hunger: A glimpse of hope for the future. 5, 16–27.

Kim, H. W., Setyabrata, D., Lee, Y., Jones, O. G., & Kim, Y. H. B. (2017). Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. Journal of Food Science, 82(12), 2787–2793. https://doi.org/10.1111/1750-3841.13960

Kim, T. K., Yong, H. I., Kim, Y. B., Jung, S., Kim, H. W., & Choi, Y. S. (2021). Effects of organic solvent on functional properties of defatted proteins extracted from Protaetia brevitarsis larvae. Food Chemistry, 336, 127679. https://doi.org/10.1016/j.foodchem.2020.127679

Lähteenmäki-Uutela, A., Grmelová, N., Hénault-Ethier, L., Deschamps, M. H., Vandenberg, G. W., Zhao, A., Zhang, Y., Yang, B., & Nemane, V. (2017). Insects as Food and Feed: Laws of the

European Union, United States, Canada, Mexico, Australia, and China. European Food and Feed Law Review, 12(1), 22–36.

Lucas-González, R., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2019). Effect of drying processes in the chemical, physico-chemical, techno-functional and antioxidant properties of flours obtained from house cricket (Acheta domesticus). European Food Research and Technology, 245(7), 1451–1458. https://doi.org/10.1007/s00217-019-03301-4

Martins da Silva, R., Köhler, A., de Cássia de Souza Schneider, R., Prado de Vargas, D., Lúcia Köhler, A., da Costa e Silva, D., & Soares, J. (2024). Proximate and fatty acid profile analysis of Tenebrio molitor and Zophobas morio using different killing methods. Food Chemistry, 445, 138719. https://doi.org/10.1016/j.foodchem.2024.138719

Melo-Ruiz, V., Garcia, M., Sandoval, H., Jiménez, H. D., & Calvo, C. (2011). Quality proteins from edible indigenous insect food of latin America and Asia. Emirates Journal of Food and Agriculture, 23, 283–289.

Mshayisa, V. V., Van Wyk, J., & Zozo, B. (2022). Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia illucens) Larvae Flours and Protein Concentrates. Foods, 11(5), Article 5. https://doi.org/10.3390/foods11050724

Ndiritu, A. K., Kinyuru, J. N., Gichuhi, P. N., & Kenji, G. M. (2019). Effects of NaCl and pH on the functional properties of edible crickets (Acheta domesticus) protein concentrate. Journal of Food Measurement and Characterization, 13(3), 1788–1796. https://doi.org/10.1007/s11694-019-00097-5

Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., & Wu, X. (2022). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 62(13), 3499–3508. https://doi.org/10.1080/10408398.2020.1867053

Pinciroli, M. (2011). Proteínas de arroz: Propiedades estructurales y funcionales [Magister en Tecnología e Higiene de los Alimentos, Universidad Nacional de La Plata]. https://doi.org/10.35537/10915/1828

Rodríguez-Ortega, L. T., González-Hernández, H., Valdez-Carrasco, J. M., Pro-Martínez, A., González-Cerón, F., & Rodriguez Ortega, A. (2020). The Nutritional quality of the white worm

(Agathymus remingtoni Stallings & Turner Lepidoptera: Hesperiidae) of maguey lechuguilla (Agave lechuguilla Torrey). Agro Productividad, 13(8). https://doi.org/10.32854/agrop.vi.1734

Ronquillo-de Jesús, E., Aguilar-Méndez, M. A., Rodrı́guez-Ortega, L. T., & San Juan-Lara, J. (2024). Entomophagy in Mexico: Current trends and outlook. https://doi.org/10.1163/23524588- 00001149

Rostro, B. R., Salazar, B. Q., Ramos-Elorduy, J., Pino, J. M., & Campos, S. C. Á. (2012). Análisis químico y nutricional de tres insectos comestibles de interés comercial en la Zona Arqueológica del Municipio de San Juan Teotihuacán y en Otumba, en el Estado de México. 37.

Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1– 11. https://doi.org/10.1016/j.ifset.2012.11.005

Siddiqui, S. A., Zannou, O., Karim, I., Kasmiati, Awad, N. M. H., Gołaszewski, J., Heinz, V., & Smetana, S. (2022). Avoiding Food Neophobia and Increasing Consumer Acceptance of New Food Trends—A Decade of Research. Sustainability, 14(16), Article 16. https://doi.org/10.3390/su141610391

Van Huis, A. (2013). Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, 58(1), 563–583. https://doi.org/10.1146/annurev-ento-120811-153704

Vanqa, N., Mshayisa, V. V., & Basitere, M. (2022). Proximate, Physicochemical, Techno- Functional and Antioxidant Properties of Three Edible Insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) Flours. Foods, 11(7), Article 7. https://doi.org/10.3390/foods11070976

Villaseñor, V. M., Enriquez-Vara, J. N., Urías-Silva, J. E., & Mojica, L. (2022). Edible Insects: Techno-functional Properties Food and Feed Applications and Biological Potential. Food Reviews International, 38(sup1), 866–892. https://doi.org/10.1080/87559129.2021.1890116

Wade, M., & Hoelle, J. (2020). A review of edible insect industrialization: Scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013. https://doi.org/10.1088/1748-9326/aba1c1

Zhang, F., Li, X., Zhao, Z., Kong, B., Cao, C., Zhang, H., Shao, J., & Liu, Q. (2024). Changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein after sustainable defatting process: Influence of the different volume ratios of n-hexane to ethanol. Food Research International, 195, 114974. https://doi.org/10.1016/j.foodres.2024.114974

Zielińska, E. (2022). Evaluating the Functional Characteristics of Certain Insect Flours (Non- Defatted/Defatted Flour) and Their Protein Preparations. Molecules, 27(19), Article 19. https://doi.org/10.3390/molecules27196339

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2025 Current Topics in Agronomic Science