Current Topics in Agronomic Science
Español Nutritional and techno-functional properties of maguey white worm flour for food product development
ISSNe: 2954-4440
PDF - English
PDF - Spanish

Keywords

Aegiale hesperiaris
edible insects
flour
proteins
techno-functionality

How to Cite

Garrido Ortiz, E. R., & Morales Camacho, J. I. (2025). Español Nutritional and techno-functional properties of maguey white worm flour for food product development. Current Topics in Agronomic Science, 5, e2509. https://doi.org/10.5154/r.ctasci.2025.05.09

Abstract

The present study evaluates the nutritional and techno-functional potential of Aegiale hesperiaris (maguey white worm) flour, an endemic species traditionally consumed in Mexico. Larvae were manually collected, lyophilized, and processed to obtain both defatted and non-defatted flours. Proximate composition was determined on a dry weight basis using a nitrogen-toprotein conversion factor of 4.76 to prevent overestimation. Functional properties such as water- and oil-retention capacities, emulsifying capacity and stability, foaming capacity and stability, and protein solubility as a function of pH were also evaluated. Defatted flour showed higher water retention (2.82 g·g-1) and oil retention capacities (2.82 g·g-1), as well as superior emulsifying properties (EC: 60.83 %, ES: 89.36 %). In contrast, the non-defatted flour showed greater foaming capacity. Protein solubility was higher in the defatted flour across the entire pH range evaluated, reaching a maximum value of 95.82 % at pH 12. These results suggest that defatting enhances the functional properties of the flour, improving its potential for use in processed foods. Therefore, A. hesperiaris flour presents an adequate nutritional profile and versatile functional properties, supporting its potential as an alternative ingredient for the development of innovative and sustainable food products.

https://doi.org/10.5154/r.ctasci.2025.05.09
PDF - English
PDF - Spanish

References

AOAC International. (2012). Official Methods of Analysis (19ª ed.). Gaithersburg, MD: AOAC International

Abril, S., Pinzón, M., Hernández-Carrión, M., & Sánchez-Camargo, A. del P. (2022). Edible Insects in Latin America: A Sustainable Alternative for Our Food Security. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.904812

Belluco, S., Bertola, M., Montarsi, F., Di Martino, G., Granato, A., Stella, R., Martinello, M., Bordin, F., & Mutinelli, F. (2023). Insects and Public Health: An Overview. Insects, 14(3), Article 3. https://doi.org/10.3390/insects14030240

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M., & Schlüter, O. K. (2016). Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2(12). https://doi.org/10.1016/j.heliyon.2016.e00218

Cortazar-Moya, S., Mejía-Garibay, B., López-Malo, A., & Morales-Camacho, J. I. (2023). Nutritional composition and techno-functionality of non-defatted and defatted flour of edible insect Arsenura armida. Food Research International, 173, 113445. https://doi.org/10.1016/j.foodres.2023.113445

Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N. M., Murta, D., Nunes, R.,

& Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS Journal, 21, 57–64. https://doi.org/10.1016/j.nfs.2020.10.001

Devi, W. D., Bonysana, R., Kapesa, K., Rai, A. K., Mukherjee, P. K., & Rajashekar, Y. (2022). Potential of edible insects as source of functional foods: Biotechnological approaches for

improving functionality. Systems Microbiology and Biomanufacturing, 2(3), 461–472. https://doi.org/10.1007/s43393-022-00089-5

Escamilla-Rosales, M. F., Castañeda-Antonio, D., Ramos-Cassellis, M. E., López-Contreras, L., Ramírez-Moreno, E., Del S. Cruz-Cansino, N., Vargas-Bello-Pérez, E., Betanzos-Cabrera, G., Díaz-Reyes, J., & Ariza-Ortega, J. A. (2022). Effect of dehydration and butter-frying on chinicuil (Comadia redtenbacheri Hammershmidt) and maguey white worm (Aegiale hesperiaris Walker). Journal of Insects as Food and Feed, 8(1), 75–84. https://doi.org/10.3920/JIFF2020.0154

FAO, F., & A. O. of the U. N. (2013). The Contribution of Insects to Food Security, Livelihoods and the Environment. FAO. https://www.fao.org/fsnforum/resources/reports-and-briefs/contribution-insects-food-security-livelihoods-and-environment

Janssen, R. H., Vincken, J. P., Van Den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278. https://doi.org/10.1021/acs.jafc.7b00471

Jeong, M. S., Lee, S. D., & Cho, S. J. (2021). Effect of Three Defatting Solvents on the Techno- Functional Properties of an Edible Insect (Gryllus bimaculatus) Protein Concentrate. Molecules, 26(17), Article 17. https://doi.org/10.3390/molecules26175307

Khan, M., Hsu, P. C., Roy, M., Khan, Z., Sharma, R., & Srivastava, H. (2020). Insects as a source of food for human hunger: A glimpse of hope for the future. 5, 16–27.

Kim, H. W., Setyabrata, D., Lee, Y., Jones, O. G., & Kim, Y. H. B. (2017). Effect of House Cricket (Acheta domesticus) Flour Addition on Physicochemical and Textural Properties of Meat Emulsion Under Various Formulations. Journal of Food Science, 82(12), 2787–2793. https://doi.org/10.1111/1750-3841.13960

Kim, T. K., Yong, H. I., Kim, Y. B., Jung, S., Kim, H. W., & Choi, Y. S. (2021). Effects of organic solvent on functional properties of defatted proteins extracted from Protaetia brevitarsis larvae. Food Chemistry, 336, 127679. https://doi.org/10.1016/j.foodchem.2020.127679

Lähteenmäki-Uutela, A., Grmelová, N., Hénault-Ethier, L., Deschamps, M. H., Vandenberg, G. W., Zhao, A., Zhang, Y., Yang, B., & Nemane, V. (2017). Insects as Food and Feed: Laws of the

European Union, United States, Canada, Mexico, Australia, and China. European Food and Feed Law Review, 12(1), 22–36.

Lucas-González, R., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2019). Effect of drying processes in the chemical, physico-chemical, techno-functional and antioxidant properties of flours obtained from house cricket (Acheta domesticus). European Food Research and Technology, 245(7), 1451–1458. https://doi.org/10.1007/s00217-019-03301-4

Martins da Silva, R., Köhler, A., de Cássia de Souza Schneider, R., Prado de Vargas, D., Lúcia Köhler, A., da Costa e Silva, D., & Soares, J. (2024). Proximate and fatty acid profile analysis of Tenebrio molitor and Zophobas morio using different killing methods. Food Chemistry, 445, 138719. https://doi.org/10.1016/j.foodchem.2024.138719

Melo-Ruiz, V., Garcia, M., Sandoval, H., Jiménez, H. D., & Calvo, C. (2011). Quality proteins from edible indigenous insect food of latin America and Asia. Emirates Journal of Food and Agriculture, 23, 283–289.

Mshayisa, V. V., Van Wyk, J., & Zozo, B. (2022). Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia illucens) Larvae Flours and Protein Concentrates. Foods, 11(5), Article 5. https://doi.org/10.3390/foods11050724

Ndiritu, A. K., Kinyuru, J. N., Gichuhi, P. N., & Kenji, G. M. (2019). Effects of NaCl and pH on the functional properties of edible crickets (Acheta domesticus) protein concentrate. Journal of Food Measurement and Characterization, 13(3), 1788–1796. https://doi.org/10.1007/s11694-019-00097-5

Nowakowski, A. C., Miller, A. C., Miller, M. E., Xiao, H., & Wu, X. (2022). Potential health benefits of edible insects. Critical Reviews in Food Science and Nutrition, 62(13), 3499–3508. https://doi.org/10.1080/10408398.2020.1867053

Pinciroli, M. (2011). Proteínas de arroz: Propiedades estructurales y funcionales [Magister en Tecnología e Higiene de los Alimentos, Universidad Nacional de La Plata]. https://doi.org/10.35537/10915/1828

Rodríguez-Ortega, L. T., González-Hernández, H., Valdez-Carrasco, J. M., Pro-Martínez, A., González-Cerón, F., & Rodriguez Ortega, A. (2020). The Nutritional quality of the white worm

(Agathymus remingtoni Stallings & Turner Lepidoptera: Hesperiidae) of maguey lechuguilla (Agave lechuguilla Torrey). Agro Productividad, 13(8). https://doi.org/10.32854/agrop.vi.1734

Ronquillo-de Jesús, E., Aguilar-Méndez, M. A., Rodrı́guez-Ortega, L. T., & San Juan-Lara, J. (2024). Entomophagy in Mexico: Current trends and outlook. https://doi.org/10.1163/23524588- 00001149

Rostro, B. R., Salazar, B. Q., Ramos-Elorduy, J., Pino, J. M., & Campos, S. C. Á. (2012). Análisis químico y nutricional de tres insectos comestibles de interés comercial en la Zona Arqueológica del Municipio de San Juan Teotihuacán y en Otumba, en el Estado de México. 37.

Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1– 11. https://doi.org/10.1016/j.ifset.2012.11.005

Siddiqui, S. A., Zannou, O., Karim, I., Kasmiati, Awad, N. M. H., Gołaszewski, J., Heinz, V., & Smetana, S. (2022). Avoiding Food Neophobia and Increasing Consumer Acceptance of New Food Trends—A Decade of Research. Sustainability, 14(16), Article 16. https://doi.org/10.3390/su141610391

Van Huis, A. (2013). Potential of Insects as Food and Feed in Assuring Food Security. Annual Review of Entomology, 58(1), 563–583. https://doi.org/10.1146/annurev-ento-120811-153704

Vanqa, N., Mshayisa, V. V., & Basitere, M. (2022). Proximate, Physicochemical, Techno- Functional and Antioxidant Properties of Three Edible Insect (Gonimbrasia belina, Hermetia illucens and Macrotermes subhylanus) Flours. Foods, 11(7), Article 7. https://doi.org/10.3390/foods11070976

Villaseñor, V. M., Enriquez-Vara, J. N., Urías-Silva, J. E., & Mojica, L. (2022). Edible Insects: Techno-functional Properties Food and Feed Applications and Biological Potential. Food Reviews International, 38(sup1), 866–892. https://doi.org/10.1080/87559129.2021.1890116

Wade, M., & Hoelle, J. (2020). A review of edible insect industrialization: Scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013. https://doi.org/10.1088/1748-9326/aba1c1

Zhang, F., Li, X., Zhao, Z., Kong, B., Cao, C., Zhang, H., Shao, J., & Liu, Q. (2024). Changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein after sustainable defatting process: Influence of the different volume ratios of n-hexane to ethanol. Food Research International, 195, 114974. https://doi.org/10.1016/j.foodres.2024.114974

Zielińska, E. (2022). Evaluating the Functional Characteristics of Certain Insect Flours (Non- Defatted/Defatted Flour) and Their Protein Preparations. Molecules, 27(19), Article 19. https://doi.org/10.3390/molecules27196339

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Current Topics in Agronomic Science