Resumen
Maize is the most widely produced cereal in the world and is the basis for many processed products, including snacks and breakfast cereals. One of the main technologies used to process whole grains is the cannon puffing machine; however, its application in maize popping has been scarcely studied. The objective of this study was to evaluate the puffed quality of native maize varieties with different endosperm hardness levels using a cannon puffing machine, to validate the performance of a semi-industrial device.
Native popping maize and maize with normal endosperm were evaluated under different processing conditions. Expansion volume (EV), percentage of unpuffed (UPK) and partially puffed kernels, expansion shape, moisture content, and grain hardness were determined. The best processing conditions were achieved using grains without moisture conditioning and an operating pressure of 1.03 MPa in the cannon puffing machine. Under these conditions, no unpuffed kernels (UPK) were observed, and an average
EV of 11.8 cm3·g-1 was obtained, with a mushroom shape and low moisture content. Puffed maize is a healthy snack alternative that adds value to native maize varieties, regardless of their endosperm hardness.
Citas
American Association of Cereal Chemists (AACC). (2020) International Approved Methods of Analysis. AACC International.
Bautista-Ramírez, E., Santacruz-Varela, A., Córdova-Téllez, L., López- Sánchez, H., & Esquivel-Esquivel, G. (2020). Rendimiento y capacidad de expansión del grano de maíz en la raza Palomero Toluqueño. Revista Mexicana de Ciencias Agrícolas, 11(7), 1607– 1618. https://doi.org/10.29312/remexca.v11i7.2130
Cañizares, L. C., Ziegler, V., da Silva-Timm, N., Ferreira, C. D., Eicholz,
E. D., & de Oliveira, M. (2024). Effects of delayed drying interval and the drying temperature of popcorn on sensory and technological quality. Journal of Cereal Science, 120, 1–7. https://doi.org/10.1016/j.jcs.2024.104035
Fast, R. B., Perdon, A. A., & Schonauer, S. L. (2020). Breakfast-Forms, ingredients, and process flow. In A. A. Perdon, S. L. Schonauer,
& K. S. Poutanen (Eds.), Breakfast cereals and how they are made (3rd ed., pp. 5–35). Elsevier Inc. https://doi.org/10.1016/c2017- 0-04647-5
Gámez-Vázquez, A. J., de la O-Olán, M., Santacruz-Varela, A., & López-Sánchez, H. (2014). Conservación in situ, manejo y aprovechamiento de maíz Palomero Toluqueño con productores custodios. Revista Mexicana de Ciencias Agrícolas, 5(8), 1519– 1530. https://doi.org/10.29312/remexca.v5i8.832
García-Pinilla, S., Gutiérrez-López, G. F., Hernández-Sánchez, H., Cáez- Ramírez, G., García-Armenta, E., & Alamilla-Beltrán, L. (2019). Quality parameters and morphometric characterization of hot- air popcorn as related to moisture content. Drying Technology, 39(1), 77–89. https://doi.org/10.1080/07373937.2019.1695626
Gökmen, S. (2004). Effects of moisture content and popping method on popping characteristics of popcorn. Journal of Food Engineering, 65(3), 357–362. https://doi.org/10.1016/j.jfoodeng.2004.01.034
Jia, L., Huang, R., Wang, S., Dong, Y., Lv, J., Zhong, W., & Yan, F. (2021). Effects of explosion puffing on the composition, structure, and functional characteristics of starch and protein in grains. ACS Food Science and Technology, 1(10), 1869–1879. https://doi.org/10.1021/acsfoodscitech.1c00232
Lee, H. J., Kim, S., Suh, H. J., & Ryu, D. (2019). Effects of explosive puffing process on the reduction of ochratoxin A in rice and oats. Food Control, 95, 334–338. https://doi.org/10.1016/j.foodcont.2018.08.004
López-Morales, F., Vázquez-Carrillo, M. G., Aragón-García, A., Pérez- Torres, B. C., Marrufo-Díaz, M. L., Hernández-Salinas, G.,
& Ibáñez-Martínez, A. (2023). Caracterización del grano y tortilla de razas nativas del Estado de Puebla, México. Revista Fitotecnia Mexicana, 46(4), 357–366. https://doi.org/10.35196/rfm.2023.4.357
Mariotti, M., Alamprese, C., Pagani, M. A., & Lucisano, M. (2006). Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. Journal of Cereal Science, 43(1), 47–56. https://doi.org/10.1016/j.jcs.2005.06.007
Mounir, S., Ghandour, A., Farid, E., & Shatta, A. (2023). Popped and puffed cereal products. In M. A. Shah, K. V. Sunooj, & S. A. Mir (Eds.), Cereal-Based Food Products (pp. 169–196). Springer. https://doi.org/10.1007/978-3-031-40308-8_8
Mrad, R., Debs, E., Maroun, R. G., & Louka, N. (2014). Multiple optimization of chemical components and texture of purple maize expanded by IVDV treatment using the response surface methodology. Food Chemistry, 165, 60–69. https://doi.org/10.1016/j.foodchem.2014.05.087
Oscco-Quispe, K. R. (2013). Efecto de la variación de humedad, presión y cantidad de carga en la obtención del maíz amarillo duro (Zea mays L.) expandido. [Tesis de licenciatura. Universidad Nacional José María Arguedas]. https://hdl.handle.net/20.500.14168/204
Pérez-Ruiz, R. V., Aguilar-Toalá, J. E., Cruz-Monterrosa, R. G., Rayas- Amor, A. A., Hernández-Rodríguez, M., Camacho-Villasana, Y., & Herrera-Pérez, J. (2024). Mexican native maize: Origin, races and impact on food and gastronomy. International Journal of Gastronomy and Food Science, 37, 100978. https://doi.org/10.1016/j.ijgfs.2024.100978
Rajha, H. N., Debs, E., Abi-Rached, R., El-Khoury, K., Al-Kazzi, M., Mrad, R., & Louka, N. (2021). Innovation in cannon puffing technology for the homogenization of bulk treatment: Half-popped purple corn, a new healthy snack. Journal of Food Process Engineering, 44(6), e13695. https://doi.org/10.1111/jfpe.13695
Ranathunga, R. A. A., Gunasekara, G. T. N., & Wijewardana, D. C. M.
S. I. (2016). Quality performance, proximate composition and sensory evaluation of developed flavoured instant popcorn. Procedia Food Science, 6, 143–146. https://doi.org/10.1016/j.profoo.2016.02.034
Serna-Saldivar, S. O., & Chuck-Hernandez, C. (2019). Food uses of lime- cooked corn with emphasis in tortillas and snacks. In S. O. Serna-Saldívar (Ed.), Corn: Chemistry and Technology (3rd edit, pp. 469–500). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811971-6.00017-6
Sharifi, S., Majzoobi, M., & Farahnaky, A. (2021). Effects of particle size and moisture content of maize grits on physical properties of expanded snacks. Journal of Texture Studies, 52(1), 110–123. https://doi.org/10.1111/jtxs.12565
SAS Institute Inc. (2002). SAS/STAT® user’s guide, version 9.0. SAS Institute Inc.
Sweley, J. C., Rose, D. J., & Jackson, D. S. (2013). Quality traits and popping performance considerations for popcorn (Zea mays Everta). Food Reviews International, 29(2), 157–177. https://doi.org/10.1080/87559129.2012.714435
Vázquez-Carrillo, M. G., Santiago-Ramos, D., & Figueroa-Cárdenas, J. D. (2019). Kernel properties and popping potential of Chapalote, a Mexican ancient native maize. Journal of Cereal Science, 86, 69–76. https://doi.org/10.1016/j.jcs.2019.01.010
Vázquez-Carrillo, M. G., Toledo-Aguilar, R., Aragón-Cuevas, F., Salinas-Moreno, Y., Palacios-Rojas, N., & Santiago-Ramos, D. (2023). From maize to tlayuda, a traditional big-flat leathery tortilla. Effect of two nixtamalization processes on some physicochemical and nutraceutical properties. International Journal of Gastronomy and Food Science, 31, 100661. https://doi.org/10.1016/J.IJGFS.2023.100661
Wellhausen, E. J., Roberts, L. M., & Hernandez, E. X. (1951). Razas de maíz en México, su origen, características y distribución. Secretaría de Agricultura y Ganadería de México. https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Raza_ Mexico_0_Book.pdf
Zulkadir, G., & İdikut, L. (2021). Determination of popping traits and grain quality of landraces popcorn populations. Journal of Food Science and Technology, 58(4), 1302–1312. https://doi.org/10.1007/s13197-020-04639-4

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Derechos de autor 2025 Current Topics in Agronomic Science