Abstract
The sensory quality of red wines is characterized by, among other parameters, color and flavor, which depend on phenolic compounds such as anthocyanins and tannins. Since these compounds are responsible for the sensory characteristics of wine, it is necessary to use techniques that allow their efficient and optimal extraction. In this study, the extraction efficiency of phenolic compounds using fungal pectinases is analyzed. Pectinases were produced with Aspergillus niger NRRL 332 in submerged fermentation, analyzing different temperatures (22, 25, 30, 35, and 38 °C), initial pH (3.1, 3.5, 4.5, 5.5 and 6.1), and growth kinetics were performed for 120 hours. The optimal pectinase production points were found to be at a temperature of 30 °C, pH of 5.5, and an incubation time of 72 h, with a maximum of 9.6 U·mL-1. Subsequently, the enzymes produced were applied in the wine maceration process. The use of pectinases significantly increased the concentration of total soluble phenols, favoring color attributes such as hue angle and chromaticity.
References
Acosta, Y., Etxabe, R., Fábrega, J., García A., Murcia, J. L., Nebot, J., Tolosa, L., & Urrero, G. (2013). El libro del vino (J. Induráin, Ed.; Primera, Vol. 1). LAROUSSE EDITORIAL, S. L.
Amin, F., Bhatti, H. N., & Bilal, M. (2019). Recent advances in the production strategies of microbial pectinases—A review. In International Journal of Biological Macromolecules (Vol. 122, pp. 1017–1026). Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2018.09.048
Bilal, M., Ji, L., Xu, Y., Xu, S., Lin, Y., Iqbal, H. M. N., & Cheng, H. (2022). Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. In Frontiers in Bioengineering and Biotechnology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2022.851768
Boulton, R. (2001). The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. In Am. J. Enol. Vitic (Vol. 52, Issue 2). Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microorganism quantities of protein, using the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
Caldas, T. W., Mazza, K. E. L., Teles, A. S. C., Mattos, G. N., Brígida, A. I. S., Conte-Junior, C. A., Borguini, R. G., Godoy, R. L. O., Cabral, L. M. C., & Tonon, R. V. (2018). Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products, 111, 86–91. https://doi.org/10.1016/j.indcrop.2017.10.012
Carvajal-Herrera, C., Jaime, J., Torres, A., Darío, I., Tascón, O., Eugenio, C., Montoya, M., & Wilson, J. (2011). Colorimetría del fruto de café (Coffea arabica L.) durante su desarrollo y maduración. Revista Facultad Nacional de Agronomía-Medellín, 64(2), 6229–6240. http://www.redalyc.org/articulo.oa?id=179922664020
El Enshasy, H. A., Elsayed, E. A., Suhaimi, N., Malek, R. A., & Esawy, M. (2018). Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnology, 18(1). https://doi.org/10.1186/s12896-018-0481-7
Fernández-González, M., Izquierdo-Cañas, P. M., GarcíaRomero, E., Paniagua-Martínez, T., & Gómez-Alonso, S. (2024). The Effects of a Saccharomyces cerevisiae Strain Overexpressing the Endopolygalacturonase PGU1 Gene on the Aminoacidic, Volatile, and Phenolic Compositions of Cabernet Sauvignon Wines. Fermentation, 10(7). https://doi.org/10.3390/fermentation10070375
Fratebianchi, D., Crespo, J. M., Tari, C., & Cavalitto, S. (2017). Control of agitation rate and aeration for enhanced polygalacturonase production in submerged fermentation by Aspergillus sojae using agro-industrial wastes. Journal of Chemical Technology and Biotechnology, 92(2), 305–310. https://doi.org/10.1002/jctb.5006
Gao, Y., Fangel, J. U., Willats, W. G. T., Vivier, M. A., & Moore, J. P. (2016). Dissecting the polysaccharide-rich grape cell wall matrix using recombinant pectinases during winemaking. Carbohydrate Polymers, 152, 510–519. https://doi.org/10.1016/j.carbpol.2016.05.115
Gao, Y., Zietsman, A. J. J., Vivier, M. A., & Moore, J. P. (2019). Deconstructing wine grape cell walls with enzymes during winemaking: New insights from glycan microarray technology. In Molecules (Vol. 24, Issue 1). MDPI AG. https://doi.org/10.3390/molecules24010165
Guler, A. (2023). Effects of different maceration techniques on the colour, polyphenols and antioxidant capacity of grape juice. Food Chemistry, 404. https://doi.org/10.1016/j.foodchem.2022.134603
Gutiérrez-Escobar, R., Aliaño-González, M. J., & CantosVillar, E. (2021). Wine polyphenol content and its influence on wine quality and properties: A review. In Molecules (Vol. 26, Issue 3). MDPI AG. https://doi.org/10.3390/molecules26030718
He, F., Mu, L., Yan, G. L., Liang, N. N., Pan, Q. H., Wang, J., Reeves, M. J., & Duan, C. Q. (2010). Biosynthesis of anthocyanins and their regulation in colored grapes. In Molecules (Vol. 15, Issue 12, pp. 9057–9091). https:// doi.org/10.3390/molecules15129057
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.
Lee, J., Durst, R. W., Wrolstad, R. E., Barnes, K. W., Eisele, ; T, Giusti, ; M M, Haché, ; J, Hofsommer, ; H, Koswig, ; S, Krueger, D. A., Kupina, ; S, Martin, ; S K, Martinsen, ; B K, Miller, T. C., Paquette, ; F, Ryabkova, ; A, Skrede, ; G, Trenn, ; U, & Wightman, J. D. (2005). Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. Journal of AOAC International, 88(5), 1269–1278.
Li, P. J., Xia, J. L., Shan, Y., Nie, Z. Y., Su, D. L., Gao, Q. R., Zhang, C., & Ma, Y. L. (2015). Optimizing Production of Pectinase from Orange Peel by Penicillium oxalicum PJ02 Using Response Surface Methodology. Waste and Biomass Valorization, 6(1), 13–22. https://doi.org/10.1007/s12649-014-9317-4
Lin, W., Xu, X., Lv, R., Huang, W., Ul Haq, H., Gao, Y., Ren, H., Lan, C., & Tian, B. (2021). Differential proteomics reveals main determinants for the improved pectinase activity in UV-mutagenized Aspergillus niger strain. Biotechnology Letters, 43(4), 909–918. https://doi.org/10.1007/s10529-020-03075-w
Mercimek Takcı, H. A., & Turkmen, F. U. (2016). Extracellular Pectinase Production and Purification from a Newly Isolated Bacillus subtilis Strain. International Journal of Food Properties, 19(11), 2443–2450. https://doi.org/ 10.1080/10942912.2015.1123270
Merkyte, V., Longo, E., Windisch, G., & Boselli, E. (2020). Phenolic compounds as markers of wine quality and authenticity. In Foods (Vol. 9, Issue 12). MDPI AG. https://doi.org/10.3390/foods9121785
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.
Morata, A., Gómez-Cordovés, M. C., Colomo, B., & Suárez, J. A. (2003). Pyruvic Acid and Acetaldehyde Production by Different Strains of Saccharomyces cerevisiae: Relationship with Vitisin A and B Formation in Red Wines. Journal of Agricultural and Food Chemistry 51(25), 7402–7409.
https://doi.org/10.1021/jf0304167
Nawaz, A., Sameer, M., Akram, F., Tahir, S. F., Arshad, Y., Haq, I. U., & Mukhtar, H. (2021). Kinetic and thermodynamic insight of a polygalacturonase: A biocatalyst for industrial fruit juice clarification. Revista Mexicana de Ingeniería Química, 20(2), 1029– 1045. https://doi.org/10.24275/rmiq/Bio2355
Ngadze, R. T., Verkerk, R., Nyanga, L. K., Fogliano, V., Ferracane, R., Troise, A. D., & Linnemann, A. R. (2018). Effect of heat and pectinase maceration on phenolic compounds and physicochemical quality of Strychnos cocculoides juice. PLoS ONE, 13(8). https://doi.org/10.1371/journal.pone.0202415
Okonji, R. E., Itakorode, B. O., Ovumedia, J. O., & Adedeji, O. S. (2019). Purification and biochemical characterization of pectinase produced by Aspergillus fumigatus isolated from soil of decomposing plant materials. Journal of Applied Biology and Biotechnology, 7(3), 1–8. https://doi.org/10.7324/JABB.2019.70301
Osete-Alcaraz, A., Bautista-Ortín, A. B., Ortega-Regules, A. E., & Gómez-Plaza, E. (2019). Combined Use of Pectolytic Enzymes and Ultrasounds for Improving the Extraction of Phenolic Compounds During Vinification. Food and Bioprocess Technology, 12(8), 1330–1339. https://doi.org/10.1007/s11947-019-02303-0
Osete-Alcaraz, A., Gómez-Plaza, E., Pérez-Porras, P., & Bautista-Ortín, A. B. (2022). Revisiting the use of pectinases in enology: A role beyond facilitating phenolic grape extraction. Food Chemistry, 372. https://doi.org/10.1016/j.foodchem.2021.131282
Pitol, L. O., Biz, A., Mallmann, E., Krieger, N., & Mitchell, D. A. (2016). Production of pectinases by solid-state fermentation in a pilot-scale packed-bed bioreactor. Chemical Engineering Journal, 283, 1009–1018. https://doi.org/10.1016/j.cej.2015.08.046
Poletto, P., Polidoro, T. A., Zeni, M., & da Silveira, M. M. (2017). Evaluation of the operating conditions for the solidstate production of pectinases by Aspergillus niger in a bench-scale, intermittently agitated rotating drum bioreactor. LWT, 79, 92–101. https://doi.org/10.1016/j. lwt.2017.01.018
Poondla, V., Yannam, S. K., Gummadi, S. N., Subramanyam, R., & Reddy Obulam, V. S. (2016). Enhanced production of pectinase by Saccharomyces cerevisiae isolate using fruit and agro-industrial wastes: Its application in fruit and fiber processing. Biocatalysis and Agricultural Biotechnology, 6, 40–50. https://doi.org/10.1016/j.bcab.2016.02.007
Price, M. L., Scoyoc, S. Van, & Butler, L. G. (1978). A Critical Evaluation of the Vanillin Reaction as an Assay for Tannin in Sorghum Grain. In J. Agric. Food Chem (Vol. 26, Issue 5). Ravindran, R., & Jaiswal, A. K. (2016). Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. In Bioengineering (Vol. 3, Issue 4). MDPI AG. https://doi.org/10.3390/bioengineering3040030
Reginatto, C., Rossi, C., Miglioranza, B. G., Santos, M. dos, Meneghel, L., Silveira, M. M. da, & Malvessi, E. (2017). Pectinase production by Aspergillus niger LB-02-SF is influenced by the culture medium composition and the addition of the enzyme inducer after biomass growth. Process Biochemistry, 58, 1–8. https://doi.org/10.1016/j.procbio.2017.04.018
Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D., & Rychlewski Christine. (2006). Handbook of Enology Volume 2 The Chemistry of Wine Stabilization and Treatments 2 nd Edition (Second). John Wiley & Sons Ltd.
Sahu, R., & Sevda, S. (2022). Pectinases: Production, Harvest, Recovery, and Potential Industrial Application. In Industrial Microbiology and Biotechnology (pp. 257– 277). Springer Nature. https://doi.org/10.1007/978-981- 6-5214-1_10
Sandri, I. G., & da Silveira, M. M. (2018). Production and application of pectinases from Aspergillus niger obtained in solid state cultivation. Beverages, 4(3). https://doi.org/10.3390/beverages4030048 Satapathy, S., Rout, J. R., Kerry, R. G., Thatoi, H., & Sahoo, S. L. (2020). Biochemical Prospects of Various Microbial Pectinase and Pectin: An Approachable Concept in Pharmaceutical Bioprocessing. In Frontiers in Nutrition (Vol. 7). Frontiers Media S.A. https://doi.org/10.3389/fnut.2020.00117
Shrestha, S., Rahman, M. S., & Qin, W. (2021). New insights in pectinase production development and industrial applications. In Applied Microbiology and Biotechnology (Vol. 105, Issue 24, pp. 9069–9087). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00253-021-11705-0
Silva, J. de C., de França, P. R. L., de Melo, A. H. F., NevesPetersen, M. T., Converti, A., & Souza Porto, T. (2019). Optimized production of Aspergillus aculeatus URM4953 polygalacturonases for pectin hydrolysis in hog plum (Spondias mombin L.) juice. Process Biochemistry, 79, 18–27. https://doi.org/10.1016/j.procbio.2018.12.014
Sim, L., Ward, O. P., & Li, Z.-Y. (1997). Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. In Journal of Industrial Microbiology & Biotechnology (Vol. 19). https://academic.oup.com/jimb/article/19/4/232/5991500
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. Wang, J., Zhang, Y., Wang, H., & Huo, S. (2019). Evaluation of extraction technologies and optimization of microwave and ultrasonic assisted consecutive extraction of phenolic antioxidants from winery byproducts. Journal of Food Process Engineering, 42(4). https://doi.org/10.1111/jfpe.13064
Waterhouse, A. L., Sacks, G. L., & Jeffery, D. W. (2016). Understanding Wine Chemistry (Second). Wiley & Sons. https://doi.org/10.1002/9781118730720
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2024 Current Topics in Agronomic Science