Current Topics in Agronomic Science
Plant growth-promoting rhizobacteria in tomato seedling production
ISSNe: 2954-4440
PDF - English
PDF - Spanish

Keywords

Solanum lycopersicum L.
ácido indolacético
AIA
PGPR
growth promoters

How to Cite

Velasco Velasco, L., Corlay-Chee, L., Cruz-Rodríguez, J. A., & Hernández-Tapia, A. (2024). Plant growth-promoting rhizobacteria in tomato seedling production. Current Topics in Agronomic Science, 4(2). https://doi.org/10.5154/r.ctas.2024.0310

Abstract

Plant growth-promoting rhizobacteria represent a biotechnological alternative to improve the production of socio-economically important species such as tomato (Solanum lycopersicum L.). The production of high-quality and safe seedlings is a key challenge prior to field establishment. One of the main obstacles for farmers are the high costs associated with sanitary inputs and fertilizers necessary to promote good rooting and reduce plant mortality. The objective of this research was to isolate rhizobacteria from the avocado rhizosphere with the capacity to produce indoleacetic acid (IAA) and evaluate their effect on root development of tomato seedlings in vitro. Two IAA-producing strains were evaluated and inoculated on seeds of two tomato genotypes (H13-37 and L3), grown in vitro using Murashige Skoog medium. The experiment was carried out in a completely randomized block design two weeks after sowing. The isolated bacterial strains produced sufficient IAA to promote root development. The L3 genotype had the best response regarding root length, total surface area, and number of branches due to bacterial inoculation.

https://doi.org/10.5154/r.ctas.2024.0310
PDF - English
PDF - Spanish

References

Ahmad, F., Ahmad, I., & Khan, M. (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology, 29(1), 29-34. https://journals.tubitak.gov.tr/biology/vol29/iss1/5/

Asari, S., Tarkowská, D., Rolčík, J., Novák, O., Palmero-Velázquez, D., Bejai, S., & Meijer, J., (2017). Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta, 245(1), 15-30. https://doi.org/10.1007/s00425-016-2580-9

Chauhan, H., Bagyaraj, D. J., & Sharma, A. (2013). Plant growth-promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Experimental Agriculture, 49(1), 43-52. https://doi.org/10.1017/S0014479712001019

Diario Oficial de la Federación (DOF) (2000). Especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. Norma oficial Mexicana NOM-021-RECNAT-2000. DOF. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf

García, J., Schmidt, J. E., Gidekel, M., & Gaudin, A. C. (2021). Impact of an antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.). Journal of Plant Nutrition, 44(12), 1818-1825. https://doi.org/10.1080/01904167.2021.1884704

Irizarry, I., & White, J. F. (2017). Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton Journal of Applied Microbiology, 122(4), 1110-1120. https://doi.org/10.1111/jam.13414

Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R. Z., & Curá, J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells, 10(6), 1551. https://doi.org/10.3390/cells10061551

Kumar, A., Patel, J. S., Meena, V. S., & Ramteke, P. W. (2019). Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. Journal of Plant Nutririon, 42(11-12), 1402- 1415. https://doi.org/10.1080/01904167.2019.1616757

Mohanty, P., Singh, P. K., Chakraborty, D., Mishra, S., & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems, 5, 667150. https://doi.org/10.3389/fsufs.2021.667150

Moreno-Gavíra, A., Diánez, F., Sánchez-Montesinos, B., & Santos, M. (2020). Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy, 10(4), 597. https://doi.org/10.3390/agronomy10040597

Orozco-Mosqueda, M. C., Rocha-Granados, M. C., Glick, B., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Reserch, 208, 25-31. https://doi.org/10.1016/j.micres.2018.01.005

Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., Naseem, M., Kintl, A., Ejaz, M., Naveed, M., Brtnicky, M., & Mustafa, A. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19), 10529. https://doi.org/10.3390/ijms221910529

Servicio de Información Agroalimentaria y Pesquera (SIAP). (2023, November 9). Cierre de la producción agrícola por estado. https://nube.siap.gob.mx/cierreagricola

Sharma, M., Sood, G., & Chauhan, A. (2021). Bioprospecting beneficial endophytic bacterial communities associated with Rosmarinus officinalis for sustaining plant health and productivity. World Journal of Microbiology and Biotechnology, 37(135), 1-17. https://doi.org/10.1007/s11274-021-03101-7

Zúñiga-Dávila, D. E. (2012). Manual de microbiología agrícola, Rhizobium, PGPRs, indicadores de fertilidad e inocuidad. Universidad Nacional Agraria la Molina.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2024 Current Topics in Agronomic Science