Resumen
Las variaciones en la masa corporal pueden alterar el equilibrio de oligoelementos y macrominerales en la fauna silvestre. El objetivo de este estudio fue evaluar la asociación entre diferentes rasgos antropométricos (altura a la cruz, longitud de la nariz a la cola, largo de la cola, largo de las orejas, largo de las patas delanteras y circunferencia torácica), así como la edad y el peso corporal, con algunos metabolitos y minerales séricos en venadas de cola blanca (Odocoileus virginianus texanus) gestantes en agostadero (n = 28) en el norte de México. El análisis de componentes principales reveló diferencias en la concentración de glucosa asociadas con las dimensiones corporales. Se observaron correlaciones negativas significativas (p < 0.01) entre la altura a la cruz y la glucosa sérica (r = -0.54), así como entre la longitud de la nariz a la cola y el colesterol sérico (r = -0.46). En contraste, la altura a la cruz (r = 0.44) y la longitud de la nariz a la cola (r = 0.38) se correlacionaron positivamente (p < 0.05) con las concentraciones séricas de hierro. Asimismo, el largo de la cola y de las orejas se asoció positivamente con el fósforo (r = 0.42 y 0.43, respectivamente; p < 0.05), mientras que el largo de la cola se correlacionó positivamente con el cobre (r = 0.49; p < 0.01). Algunas medidas indicativas del tamaño corporal se asociaron negativamente con metabolitos séricos relacionados con el estado nutricional. En general, las venadas más pequeñas presentaron un perfil metabólico sanguíneo potencialmente más favorable que las venadas de mayor tamaño. Los metabolitos sanguíneos indicativos del estado nutricional pueden ser útiles para describir las dimensiones corporales de las venedas.
Citas
Arnemo, J. M, & Ranheim, B. (1999). Effects of medetomidine and atipamezole on serum glucose and cortisol levels in captive reindeer (Rangifer tarandus tarandus). Rangifer, 19(2), 85-89. https://doi.org/10.7557/2.19.2.284
Ashour, G., Gad, A., Fayed, A. K., Ashmawy, N. A., & El-Sayed, A. (2020). Evaluation of growth performance, blood metabolites and gene expression analysis in Egyptian sheep breeds, in relation to age. World Veterinary Journal, 10(4), 18-29. https://doi.org/10.36380/scil.2020.wvj3
Bishop, C. J., White, G. C., Freddy, D. J., Watkins, B. E., & Stephenson, T. R. (2009). Effect of enhanced nutrition on mule deer population rate of change. Wildlife Monographs, 172(1), 1-28. https://doi.org/10.2193/2008-107
Boesch, J. M., Boulanger, J. R., Curtis, P. D., Erb, H. N., Ludders, J. W., Kraus, M. S., & Gleed, R. D. (2011). Biochemical variables in free-ranging white-tailed deer (Odocoileus virginianus) after chemical immobilization in clover traps or via ground-darting. Journal of Zoo and Wildlife Medicine, 42(1), 18-28. https://doi.org/10.1638/2009-0146.1
Burdic, S., Mitchell, M. A., Neil, J., Heggem, B., Whittington, J., & Acierno, M. J. (2012). Evaluation of two point-of-care meters and a portable chemistry analyzer for measurement of blood glucose concentrations in juvenile white-tailed deer (Odocoileus virginianus). Journal of the American Veterinary Medical Association, 240(5), 596-599. https://doi.org/10.2460/javma.240.5.596
Cabanac, A. J., Ouellet, J. P., Crête, M., & Rioux, P. (2005). Urinary metabolites as an index of body condition in wintering white-tailed deer Odocoileus virginianus. Wildlife Biology, 11(1), 59-66. https://doi.org/10.2981/0909-6396(2005)11[59:UMAAIO]2.0.CO;2
Cain, J. W., Gedir, J. V., Marshal, J. P., Krausman, P. R., Allen, J. D., Duff, G. C., Jansen, B. D., & Morgart, J. R. (2017). Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments. Oikos, 126(10), 1459-1471. https://doi.org/10.1111/oik.04282
Carbone, J. W., McClung, J. P., & Pasiakos, S. M. (2012). Skeletal muscle responses to negative energy balance: effects of dietary protein. Advances in Nutrition, 3(2), 119-126. https://doi.org/10.3945/an.111.001792
Drennan, M. J., McGee, M., & Keane, M. G. (2008). The value of muscularity and skeletal scores in the live animal and carcass grades as indicators of carcass composition in cattle. Animal, 2(5), 752-760. https://doi.org/10.1017/S1751731108001754
Federation of Animal Science Societies (FASS). (2010). Guide for care and use of agricultural animals in research and teaching (3rd Edition). American Dairy Science Association ‒ American Society of Animal Science ‒ the Poultry Science Association. Fiske, C. H., & Subbarow, Y. J. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66(2), 375-400. https://doi.org/10.1016/S0021-9258(18)84756-1
Greenwood, M. P., Kelley, S. F., Urso, P. M., Anderson, M. J., Beverly, M. M., Barr, C., & Stewar, C. R. (2023). Determination of blood micromineral and fat-soluble vitamin values for white-tailed deer. The Texas Journal of Agriculture and Natural Resources, 36, 13-23. https://txjanr.agintexas.org/index.php/txjanr/article/view/441
Jaquiery, A. L., Oliver, M. H., Landon-Lane, N., Matthews, S. J., Harding, J. E., & Bloomfield, F. H. (2013). Unpredictable feeding impairs glucose tolerance in growing lambs. PLOS One, 8(4), e61040. https://doi.org/10.1371/journal.pone.0061040
Kida, K. (2003). Relationships of metabolic profiles to milk production and feeding in dairy cows. The Journal of Veterinary Medical Science, 65(6), 671-677. https://doi.org/10.1292/jvms.65.671
Kohli, M., Sankaran, M., Suryawanshi, K. R., & Mishra, C. (2014). A penny saved is a penny earned: lean season foraging strategy of an alpine ungulate. Animal Behaviour, 92, 93-100. https://doi.org/10.1016/j.anbehav.2014.03.031
Lambe, N. R., Navajas, E. A., Schofield, C. P., Fisher, A. V., Simm, G., Roehe, R., & Bünger, L. (2008). The use of various live animal measurements to predict carcass and meat quality in two divergent lamb breeds. Meat Science, 80(4), 1138-1149. https://doi.org/10.1016/j.meatsci.2008.05.026
Lomas, L. A., & Bender, L. C. (2007). Survival and cause-specific mortality of neonatal mule deer fawns, north-central New Mexico. Journal of Wildlife Management, 71(3), 884-894. https://doi.org/10.2193/2006-203
Mellado, M., Rodríguez, A., Villarreal, J. A., & Lopez, R. (2004). Height to withers and abdominal circumference effects on diets of grazing goats. Applied Animal Behaviour Science, 88(3-4), 263-274. https://doi.org/10.1016/j.applanim.2004.03.011
Milner, J. M., van Beest, F. M., Solberg, E. J., & Storaas, T. (2013). Reproductive success and failure: The role of winter body mass in reproductive allocation in Norwegian moose. Oecologia, 172(4), 995-1005. https://doi.org/10.1007/s00442-012-2547-x
Minami, M., Oonishi, N., Higuchi, N., Okada, A., & Takatsuki, S. (2012). Costs of parturition and rearing in female sika deer (Cervus nippon). Zoological Science, 29(3), 147-151. https://doi.org/10.2108/zsj.29.147
Monteith, K. L., Long, R. A., Stephenson, T. R., Bleich, V. C., Bowyer, R. T., & LaSharr, T. N. (2018). Horn size and nutrition in mountain sheep: can ewe handle the truth?. Journal of Wildlife Management, 82(1), 67-84. https://doi.org/10.1002/jwmg.21338
Monteith, K. L., Stephenson, T. R., Bleich, V. C., Conner, M. M., Pierce, B. M., & Bowyer, R. T. (2013). Risk-sensitive allocation in seasonal dynamics of fat and protein reserves in a long-lived mammal. Journal of Animal Ecology, 82(2), 377-388. https://doi.org/10.1111/1365-2656.12016
Moratz, K. L., Gullikson, B. S., Michel, E. S., Grove, D. M., Jenks, J. A., & Jensen, W. F. (2019). Serological survey and pathogen exposure of adult female white-tailed deer in the Western Dakotas. The Prairie Naturalist, 51, 58-67. https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=1303&context=nrm_pubs
Parker, K. L., Barboza, P. S., & Gillingham, M. P. (2009). Nutrition integrates environmental responses of ungulates. Functional Ecology, 23(1), 57-69. https://doi.org/10.1111/j.1365-2435.2009.01528.x
Peterson, B. C., Koupal, K. D., Schissel, A. K., & Siegel, C. M. (2015). Longevity of mineral supplements within the soil and associated use by white-tailed deer. Transactions of the Nebraska Academy of Sciences and Affiliated Societies, 35, 61-67. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1486&context=tnas
Ruhe, R. C., Curry, D. L., Herrmann, S., & McDonald, R. B. (1992). Age and gender effects on insulin secretion and glucose sensitivity of the endocrine pancreas. American Journal of Physiology–Regulatory, Integrative and Comparative Physiology, 262(4), 671-676. https://doi.org/10.1152/ajpregu.1992.262.4.R671
Severinghaus, C. W. (1949). Tooth development and wear as criteria of age in white-tailed deer. Journal of Wildlife Management, 13(2), 195-216. https://www.jstor.org/stable/pdf/3796089.pdf
Shane, M. W., McCully, M. E., & Lambers, H. (2004). Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). Journal of Experimental Botany, 55(399), 1033-1044. https://doi.org/10.1093/jxb/erh111
Stringer, E. M., Kennedy-Stoskopf, S., Chitwood, M. C., Thompson, J. R., & dePerno, C. S. (2011). Hyperkalemia in free-ranging white-tailed deer (Odocoileus virginianus). Journal of Wildlife Diseases, 47(2), 307-313. https://doi.org/10.7589/0090-3558-47.2.307
Tadesse, D., Puchala, R., & Goetsch, A. L. (2021). Effects of restricted feed intake on blood constituent concentrations in Dorper, Katahdin, and St. Croix sheep from different regions of the USA. Veterinary and Animal Science, 14, 100211. https://doi.org/10.1016/j.vas.2021.100211
Tollefson, T. N., Shipley, L. A., Myers, W. L., Keisler, D. H., & Dasgupta, N. (2010). Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. Journal of Wildlife Management, 74(5), 974-986. https://doi.org/10.2193/2008-529
Van Saun, R. J., & Wagner, D. C. (2025). Nutrition of deer. In A. P. Foster (Ed.), Deer veterinary medicine (pp. 151-176). Wiley & Sons Ltd. Wang, M., Guo, Q., Shan, Y., Cheng, Z., Zhang, Q., Bai, J., Dong, Y., & Zhong, Z. (2024). Effects of probiotic supplementation on body weight, growth performance, immune function, intestinal microbiota and metabolites in fallow deer. Biology, 13(8), 603. https://doi.org/10.3390/biology13080603

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2025 Revista Chapingo Serie Zonas Áridas

