Revista Chapingo Serie Zonas Áridas
Associations of anthropometric markers of white-tailed deer (Odocoileus virginianus) with serum metabolites and minerals
ISSNe: 2007-526X
PDF

Keywords

body size
cholesterol
cooper
glucose
phosphorus

How to Cite

Rodríguez-Huerta, F. A., García-Martínez, J. E., García, O. A., Contreras, V., Mellado, J., & Mellado, M. (2025). Associations of anthropometric markers of white-tailed deer (Odocoileus virginianus) with serum metabolites and minerals. Revista Chapingo Serie Zonas Áridas, 24. https://doi.org/10.5154/r.rchsza.2023.03.002

Abstract

Variations in body mass can influence the balance of trace elements and macrominerals in wildlife species. The objective of this study was to assess the associations between selected anthropometric traits (withers height, nose-to-tail length, tail length, ear length, foreleg length, and thoracic circumference), as well as age and body weight, and specific serum metabolites and mineral concentrations in gestating free-ranging female white-tailed deer (Odocoileus virginianus texanus) (n = 28) from northern Mexico. Principal components analysis identified differences in serum glucose concentrations associated with body dimensions. Significant negative correlations (p < 0.01) were observed between withers height and serum glucose (r = -0.54), and between nose-to-tail length and serum cholesterol (r = -0.46). In contrast, withers height (r = 0.44) and nose-to-tail length (r = 0.38) were positively correlated (p < 0.05) with serum iron concentrations. Additionally, tail length and ear length were positively correlated with serum phosphorus (r = 0.42 and 0.43, respectively; p < 0.05), while tail length showed a positive correlation with serum copper (r = 0.49; p < 0.01). Certain body measurements indicative of overall body size were negatively associated with serum metabolites related to nutritional status. Overall, smaller deer showed a more favorable blood metabolic profile than larger deer. These findings suggest that blood metabolites indicative of nutritional status may serve as useful biomarkers for characterizing body dimensions in white-tailed deer.

https://doi.org/10.5154/r.rchsza.2023.03.002
PDF

References

Arnemo, J. M, & Ranheim, B. (1999). Effects of medetomidine and atipamezole on serum glucose and cortisol levels in captive reindeer (Rangifer tarandus tarandus). Rangifer, 19(2), 85-89. https://doi.org/10.7557/2.19.2.284

Ashour, G., Gad, A., Fayed, A. K., Ashmawy, N. A., & El-Sayed, A. (2020). Evaluation of growth performance, blood metabolites and gene expression analysis in Egyptian sheep breeds, in relation to age. World Veterinary Journal, 10(4), 18-29. https://doi.org/10.36380/scil.2020.wvj3

Bishop, C. J., White, G. C., Freddy, D. J., Watkins, B. E., & Stephenson, T. R. (2009). Effect of enhanced nutrition on mule deer population rate of change. Wildlife Monographs, 172(1), 1-28. https://doi.org/10.2193/2008-107

Boesch, J. M., Boulanger, J. R., Curtis, P. D., Erb, H. N., Ludders, J. W., Kraus, M. S., & Gleed, R. D. (2011). Biochemical variables in free-ranging white-tailed deer (Odocoileus virginianus) after chemical immobilization in clover traps or via ground-darting. Journal of Zoo and Wildlife Medicine, 42(1), 18-28. https://doi.org/10.1638/2009-0146.1

Burdic, S., Mitchell, M. A., Neil, J., Heggem, B., Whittington, J., & Acierno, M. J. (2012). Evaluation of two point-of-care meters and a portable chemistry analyzer for measurement of blood glucose concentrations in juvenile white-tailed deer (Odocoileus virginianus). Journal of the American Veterinary Medical Association, 240(5), 596-599. https://doi.org/10.2460/javma.240.5.596

Cabanac, A. J., Ouellet, J. P., Crête, M., & Rioux, P. (2005). Urinary metabolites as an index of body condition in wintering white-tailed deer Odocoileus virginianus. Wildlife Biology, 11(1), 59-66. https://doi.org/10.2981/0909-6396(2005)11[59:UMAAIO]2.0.CO;2

Cain, J. W., Gedir, J. V., Marshal, J. P., Krausman, P. R., Allen, J. D., Duff, G. C., Jansen, B. D., & Morgart, J. R. (2017). Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments. Oikos, 126(10), 1459-1471. https://doi.org/10.1111/oik.04282

Carbone, J. W., McClung, J. P., & Pasiakos, S. M. (2012). Skeletal muscle responses to negative energy balance: effects of dietary protein. Advances in Nutrition, 3(2), 119-126. https://doi.org/10.3945/an.111.001792

Drennan, M. J., McGee, M., & Keane, M. G. (2008). The value of muscularity and skeletal scores in the live animal and carcass grades as indicators of carcass composition in cattle. Animal, 2(5), 752-760. https://doi.org/10.1017/S1751731108001754

Federation of Animal Science Societies (FASS). (2010). Guide for care and use of agricultural animals in research and teaching (3rd Edition). American Dairy Science Association ‒ American Society of Animal Science ‒ the Poultry Science Association. Fiske, C. H., & Subbarow, Y. J. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66(2), 375-400. https://doi.org/10.1016/S0021-9258(18)84756-1

Greenwood, M. P., Kelley, S. F., Urso, P. M., Anderson, M. J., Beverly, M. M., Barr, C., & Stewar, C. R. (2023). Determination of blood micromineral and fat-soluble vitamin values for white-tailed deer. The Texas Journal of Agriculture and Natural Resources, 36, 13-23. https://txjanr.agintexas.org/index.php/txjanr/article/view/441

Jaquiery, A. L., Oliver, M. H., Landon-Lane, N., Matthews, S. J., Harding, J. E., & Bloomfield, F. H. (2013). Unpredictable feeding impairs glucose tolerance in growing lambs. PLOS One, 8(4), e61040. https://doi.org/10.1371/journal.pone.0061040

Kida, K. (2003). Relationships of metabolic profiles to milk production and feeding in dairy cows. The Journal of Veterinary Medical Science, 65(6), 671-677. https://doi.org/10.1292/jvms.65.671

Kohli, M., Sankaran, M., Suryawanshi, K. R., & Mishra, C. (2014). A penny saved is a penny earned: lean season foraging strategy of an alpine ungulate. Animal Behaviour, 92, 93-100. https://doi.org/10.1016/j.anbehav.2014.03.031

Lambe, N. R., Navajas, E. A., Schofield, C. P., Fisher, A. V., Simm, G., Roehe, R., & Bünger, L. (2008). The use of various live animal measurements to predict carcass and meat quality in two divergent lamb breeds. Meat Science, 80(4), 1138-1149. https://doi.org/10.1016/j.meatsci.2008.05.026

Lomas, L. A., & Bender, L. C. (2007). Survival and cause-specific mortality of neonatal mule deer fawns, north-central New Mexico. Journal of Wildlife Management, 71(3), 884-894. https://doi.org/10.2193/2006-203

Mellado, M., Rodríguez, A., Villarreal, J. A., & Lopez, R. (2004). Height to withers and abdominal circumference effects on diets of grazing goats. Applied Animal Behaviour Science, 88(3-4), 263-274. https://doi.org/10.1016/j.applanim.2004.03.011

Milner, J. M., van Beest, F. M., Solberg, E. J., & Storaas, T. (2013). Reproductive success and failure: The role of winter body mass in reproductive allocation in Norwegian moose. Oecologia, 172(4), 995-1005. https://doi.org/10.1007/s00442-012-2547-x

Minami, M., Oonishi, N., Higuchi, N., Okada, A., & Takatsuki, S. (2012). Costs of parturition and rearing in female sika deer (Cervus nippon). Zoological Science, 29(3), 147-151. https://doi.org/10.2108/zsj.29.147

Monteith, K. L., Long, R. A., Stephenson, T. R., Bleich, V. C., Bowyer, R. T., & LaSharr, T. N. (2018). Horn size and nutrition in mountain sheep: can ewe handle the truth?. Journal of Wildlife Management, 82(1), 67-84. https://doi.org/10.1002/jwmg.21338

Monteith, K. L., Stephenson, T. R., Bleich, V. C., Conner, M. M., Pierce, B. M., & Bowyer, R. T. (2013). Risk-sensitive allocation in seasonal dynamics of fat and protein reserves in a long-lived mammal. Journal of Animal Ecology, 82(2), 377-388. https://doi.org/10.1111/1365-2656.12016

Moratz, K. L., Gullikson, B. S., Michel, E. S., Grove, D. M., Jenks, J. A., & Jensen, W. F. (2019). Serological survey and pathogen exposure of adult female white-tailed deer in the Western Dakotas. The Prairie Naturalist, 51, 58-67. https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=1303&context=nrm_pubs

Parker, K. L., Barboza, P. S., & Gillingham, M. P. (2009). Nutrition integrates environmental responses of ungulates. Functional Ecology, 23(1), 57-69. https://doi.org/10.1111/j.1365-2435.2009.01528.x

Peterson, B. C., Koupal, K. D., Schissel, A. K., & Siegel, C. M. (2015). Longevity of mineral supplements within the soil and associated use by white-tailed deer. Transactions of the Nebraska Academy of Sciences and Affiliated Societies, 35, 61-67. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1486&context=tnas

Ruhe, R. C., Curry, D. L., Herrmann, S., & McDonald, R. B. (1992). Age and gender effects on insulin secretion and glucose sensitivity of the endocrine pancreas. American Journal of Physiology–Regulatory, Integrative and Comparative Physiology, 262(4), 671-676. https://doi.org/10.1152/ajpregu.1992.262.4.R671

Severinghaus, C. W. (1949). Tooth development and wear as criteria of age in white-tailed deer. Journal of Wildlife Management, 13(2), 195-216. https://www.jstor.org/stable/pdf/3796089.pdf

Shane, M. W., McCully, M. E., & Lambers, H. (2004). Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). Journal of Experimental Botany, 55(399), 1033-1044. https://doi.org/10.1093/jxb/erh111

Stringer, E. M., Kennedy-Stoskopf, S., Chitwood, M. C., Thompson, J. R., & dePerno, C. S. (2011). Hyperkalemia in free-ranging white-tailed deer (Odocoileus virginianus). Journal of Wildlife Diseases, 47(2), 307-313. https://doi.org/10.7589/0090-3558-47.2.307

Tadesse, D., Puchala, R., & Goetsch, A. L. (2021). Effects of restricted feed intake on blood constituent concentrations in Dorper, Katahdin, and St. Croix sheep from different regions of the USA. Veterinary and Animal Science, 14, 100211. https://doi.org/10.1016/j.vas.2021.100211

Tollefson, T. N., Shipley, L. A., Myers, W. L., Keisler, D. H., & Dasgupta, N. (2010). Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. Journal of Wildlife Management, 74(5), 974-986. https://doi.org/10.2193/2008-529

Van Saun, R. J., & Wagner, D. C. (2025). Nutrition of deer. In A. P. Foster (Ed.), Deer veterinary medicine (pp. 151-176). Wiley & Sons Ltd. Wang, M., Guo, Q., Shan, Y., Cheng, Z., Zhang, Q., Bai, J., Dong, Y., & Zhong, Z. (2024). Effects of probiotic supplementation on body weight, growth performance, immune function, intestinal microbiota and metabolites in fallow deer. Biology, 13(8), 603. https://doi.org/10.3390/biology13080603

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Revista Chapingo Serie Zonas Áridas