Abstract
Solid-state fermentation (FES by its abbreviation in Spsnish) involves the growth of microorganisms in solid-wet materials to produce enzymes, organic acids, biopesticides, biofuels, among others. Compared to submerged fermentation, this method offers advantages such as: simple culture media, higher volumetric productivity with lower input requirements. Furthermore, it allows the use of agroindustrial waste, reducing costs and contributing to sustainable waste management. The objective of this study was to compare the efficiency of aerobic (biodigester bales) and anaerobic (traditional composting) solid fermenters by quantifying the microbial respiration rate (TRM by its abbreviation in Spanish) using alkaline traps, mineralization rate (TAM by its abbreviation in Spanish), performance, pH and percentage of organic carbon (%CO) of two treatments (one anaerobic and one aerobic fermentation), with four replicates each set in a completely randomized experimental design. The results were analyzed with analysis of variance, Barttled’s test for homogeneity of variance, and Tukey’s comparison of means (P ≤ 0.05). Parameter analysis revealed that TAM was significantly higher in anaerobic treatments (1.62 g·d-1) compared to aerobic treatments (0.70 g·d-1). On the other hand, performance was 20% higher in aerobic fermenters compared to anaerobic ones. These results will contribute to optimize FES processes, promoting sustainable waste management practices, and improving the production of quality organic fertilizers.
References
Ansorena Miner, J. (1994). Susstratos: propiedades y caracterización. Mundi-Prensa.
Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444- 5453. https://doi.org/10.1016/j.biortech.2008.11.027
Carvajal Flórez, E., Suárez Higuita, K., & Clavijo Rodríguez, L. V. (2024). Pacas Biodigestoras para la Transformación de Residuos Orgánicos y Material Vegetal en una Institución Universitaria de Educación Superior. Revista EIA, 21(41), Reia4108. pp. 1-19. https://doi.org/10.24050/reia.v21i41.1728
Castro-Martínez, O. R., Velázquez-Cigarroa, E., & Tello-García,
E. (Ed.) (2020). Educación ambiental y cambio climático. Repercusiones, perspectivas y experiencias locales. Universidad Autónoma Chapingo. Recuperado el 05 de abril del 2024 de https://omp.siea.org.mx/omp/index.php/omp/catalog/view/4/85/129
Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2017). Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57-67. https://doi.org/10.1016/j.biortech.2017.06.133
Chen, T. T., Wang, L. F., Wang, O., & Han, J. R. (2013). Isolation and identification of thermophilic actinomycetes in asparagus old stem compost. Journal of Shanxi Agricultural Sciences, 1, 40-45.
Farinas, C. S. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes. Biochemical Engineering Journal, 102, 198-208. https://doi.org/10.1016/j.rser.2015.07.092
Garzón Marín, I., Cruz, E. C., Infante, A., & Cuervo, J. L. (2022). Efecto del compost de residuos de flores sobre algunas propiedades físicas, químicas y biológicas del suelo. Acta Agronómica, 71(2), 111-118. https://doi.org/10.15446/acag.v71n2.88900
Guerrero-Ortiz, P. L., Quintero-Lizaola, R., Espinoza-Hernández, V., Benedicto-Valdés, G. S., de M., Guerrero-Ortíz, P. L., Quintero- Lizaola, R., Espinoza-Hernández, V., Benedicto-Valdés, G. S., & de, M. (2012). Respiración de CO2 como indicador de la actividad microbiana en abonos orgánicos de lupinus. Terra Latinoamericana, 30(4), 355-362. https://www. scielo.org.mx/scielo. Php?script=sci_arttext&pid=S0187-57792012000400355&lng=es&nrm=iso
Insam, H., & De Bertoldi, M. (2007). Microbiology of Composting Process. In: Diaz, L.F., de Bertoldi, M., Bidlingmaier, W. and Stentiford, E., Eds., Compost Science and Technology, Waste Management Series, Elsevier Science. https://doi.org/10.1016/S1478-7482(07)80006-6
Kumar, Y., Kaushal, D., Kaur, G., & Gulati, D. (2020). Effect of soil organic matter on physical properties of soil. Just Agriculture, 1(2), 25-30. Recuperado el 20 de mayo del 2024 de https://www.researchgate.net/publication/360560644_Effect_of_soil_organic_matter_on_physical_properties_of_soil
Laich, F. (2011). El papel de los microorganismos en el proceso de compostaje. Unidad de Microbiología Aplicada, Instituto Canario de Investigaciones Agrarias. Recuperado el 14 de abril del 2024 de https://goo.su/crj3C
Letelier, A. E. (1967). Manual de fertilizantes para Chile. Banco del Estado. Santiago de Chile. 138 p.
Lorenzo Acosta, Y., & Obaya Abreu, M. C. (2005). La digestión anaerobia. Aspectos teóricos. Parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar, XXXIX(1), 35-48.
Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3-16. https://doi.org/10.1016/S0960-8524(00)00023-7
Meena, A. L., Karwal, M., Dutta, D., & Mishra, R. P. (2021). Composting: Phases and factors responsible for efficient and improved composting. Agriculture and Food: e-Newsletter, 3(1), 85-90. https://doi.org/10.13140/RG.2.2.13546.95689
Mitchell, D. A., Berovic, M., & Krieger, N. (2006). Solid-state fermentation bioreactors: Fundamentals of design and operation. Springer Science & Business Media.
Narihiro, T., & Sekiguchi, Y. (2007). Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Current Opinion in Biotechnology, 18(3), 273-278. https://doi.org/10.1016/j.copbio.2007.04.003
Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 81-84 https://doi.org/10.1016/S1369-703X(02)00121-3
Pandey, A., Soccol, C. R., & Mitchell, D. (2000). New developments in solid-state fermentation: I-bioprocesses and products. Process Biochemistry, 35(10), 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7
Pandey, A., Soccol, C. R., & Mitchell, D. (2017). New developments in solid-state fermentation: II. Rational approaches to the design of bioreactors. Process Biochemistry, 42(8), 1203-1212.
Pastrana, L. (1996). Fundamentos de la fermentación en estado sólido y aplicación a la industria alimentaria. Ciencia y Tecnologia Alimentaria, 1(3), 4–12. https://doi. org/10.1080/11358129609487556
Peñalosa-Bernal, J. P., & Ossa-Carrasquilla, L. C. (2023). Estimación de gases de efecto invernadero emitidos por la paca biodigestora durante el tratamiento de residuos orgánicos. Revista Chapingo Serie Agricultura Tropical, 3(1), 55-69. https://doi.org/10.5154/r.rchsagt.2023.03.05
Rosario, E., & Eduardo, C. (2021). Una revisión sobre la diversidad microbiana y su rol en el compostaje aerobio. Aporte Santiagino.https://doi.org/10.32911/as.2021.v14.n2.822
Ruíz-Leza, H. A., Rodríguez-Jasso, R. M., Rodríguez-Herrera, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2007). Diseño de biorreactores para fermentación en medio sólido. Revista Mexicana de Ingeniería Química, 6(1), 33-40. Universidad Autónoma Metropolitana Unidad Iztapalapa.
Schaub, S. M., & Leonard, J. J. (1996). Composting: An alternative waste management option for food processing industries. Trends in Food Science & Technology, 7(8), 263-268. https://doi.org/10.1016/0924-2244(96)10029-7
Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13-18. https://doi.org/10.1016/j.bej.2008.10.019
Smith, J., & Brown, P. (2020). Fermentación en estado sólido: Comparación de sistemas aerobios y anaerobios. Journal of Fermentation Science, 45(2), 123-135.
Tejeda-Mansir, A., Montesinos-Cisneros, R. M., Guzmán-Zamudio, R. (2011). Bioseparaciones. Pearson Educación. México. 704 pág. Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146-161. https://doi.org/10.1016/j.bej.2013.10.013 Tiquia, S. M. (2005). Microbiological parameters as indicators of
compost maturity. Journal of Applied Microbiology, 99(4), 816- 828. https://doi.org/10.1111/j.1365-2672.2005.02673.x
Tuomela, M., Vikman, M., Hatakka, A., & Itävaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72(2), 169-183. https://doi.org/10.1016/S0960-8524(99)00104-2
Umer, M. I., & Rajab, S. M. (2012). Correlation between aggregate stability and microbiological activity in two Russian soil types. Eurasian Journal of Soil Science, 1, 45-50. Recuperado el 22 de marzo del 2024 de https://dergipark.org.tr/tr/download/article-file/62778
Vásquez Castro, E. R., & Millones Chanamé, C. E. (2021). Una revisión sobre la diversidad microbiana y su rol en el compostaje aerobio. Aporte Santiaguino, 14(2), pág. 253–275. https://doi.org/10.32911/as.2021.v14.n2.822

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Revista Chapingo Serie Agricultura Tropical