Resumen
La finalidad de un humedal es eliminar de manera significativa las impurezas de tipo biológico, químico y físico presentes en el agua, contribuyendo así a la mejora de la calidad del agua y preservación del ecosistema local. El objetivo de esta investigación fue realizar el diseño de un sistema con el uso de humedales artificiales mediante la caracterización de los residuos vertidos en una sección del arroyo Tántala, escorrentía que atraviesa por la localidad de Milcahuales perteneciente al municipio de Álamo Temapache, Veracruz. El resultado fue el diseño de un humedal artificial subsuperficial de flujo vertical de cuatro fases. La investigación comprendió una revisión de literatura en cuanto a temas de humedales a nivel internacional y nacional, recopilación de información del área de estudio mediante entrevistas con la población para la identificación de las fuentes de contaminación y recorridos de campo para observar las condiciones del arroyo; como resultado, los residuos que predominaron en el agua fueron: orgánicos, inorgánicos y de manejo especial. El estudio contribuirá significativamente a mejorar la calidad de vida de la comunidad y preservar el entorno ambiental a largo plazo.
Citas
Britto, R. M., Alves, L. G. S., Machado, A. R. T., & Lima, J. C. F. (2022). Water pollution in developing countries: Challenges and perspectives. Environmental Science and Pollution Research, 29(15), 21725-21740.
Brix, H., & Schierup, H. H. (2015). The use of aquatic macrophytes in water-pollution control. AMBIO: A Journal of the Human Environment, 44(2), 100-111.
Comisión Nacional del Agua [CONAGUA]. (2018). Inventario Nacional de Descargas de Aguas Residuales. https://www.gob.mx/conagua/documentos/inventario-nacional-de-descargas-de-aguas-residuales
Cruz Hernández, Y. (2024). Diseño de prototipo de un humedal para la recuperación del arroyo en la localidad de Milcahuales, municipio de Álamo Temapache, Ver. (Tesis de licenciatura, Instituto Tecnológico Superior de Álamo Temapache).
Diario Oficial Federación (2007). Artículo 18 de la Ley General para la Prevención y Gestión Integral de Residuos .
Espinoza-Tenorio, A., Esquivel-Basaldo, D., Alcántara-Concepción, V., & Lok-Núñez, A. (2020). Contaminación de ríos y arroyos en Veracruz, México. Revista de la Universidad Veracruzana, 20(1), 35-46. https://doi.org/10.25009/run.v0i0.2598
García-García, P. L., Ruiz-Picos, R. A., & Sedeño-Díaz, J. E. (2023). Macroinvertebrate community structure as an indicator of water quality in Veracruz rivers. Ecological Indicators, 146, 110046.
Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. T. (2023). A review on the application of constructed wetlands for microplastics removal from water. Science of The Total Environment, 856, 159091.
Hijosa-Valsero, M., Matamoros, V., Martín-Villacorta, J., Bécares, E., & Bayona, J. M. (2011). Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Research, 44(5), 1429-1439. https://doi.org/10.1016/j.watres.2009.10.032
Hijosa-Valsero, M., Reyes-Contreras, C., Domínguez-Espinosa, R., Bécares, E., & Bayona, J. M. (2016). Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere, 145, 508-517.
Ilyas, H., & Masih, I. (2017). The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. Journal of Environmental Management, 198, 372-383.
Instituto Nacional de Estadística y Geografía (INEGI). (2020). Censo de Población y Vivienda 2020, Tabulados básicos por localidad (Milcahuales). https://www.inegi.org.mx/app/tabulados/
Instituto Nacional de Estadística y Geografía (INEGI). (2023). Mapa Digital de México. https://www.inegi.org.mx/app/mapa/
Langergraber, G., Dotro, G., Nivala, J., Rizzo, A., & Stein, O. R. (2020). Wetland Technology: Practical Information on the Design and Application of Treatment Wetlands. IWA Publishing.
Li, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2022). Emerging contaminants removal by constructed wetlands: A critical review. Science of The Total Environment, 805, 150355.
Liu, L., Zhao, X., Zhao, N., Shen, Z., Wang, M., Guo, Y., & Xu, Y. (2021). Effect of aeration modes on pollutant removal and microorganism distribution in constructed wetland mesocosms treating rural household wastewater. Journal of Environmental Sciences, 99, 249-259.
López-Hernández, M., Ramos-Espinosa, M. G., & Carranza-Fraser, J. (2017). Multi-temporal analysis of water quality and its relationship to land use and land cover in a coastal watershed of Veracruz, Mexico. Environmental Monitoring and Assessment, 189(4), 200.
López-Ramírez, M. A., Sánchez-González, A., & Rodríguez-Castro, V. (2024). Microplastic pollution in Mexican rivers: A five-year assessment and implications for aquatic ecosystems. Water Research, 215, 119234.
Lutterbeck, C. A., Kist, L. T., Lopez, D. R., Zerwes, F. V., & Machado, Ê. L. (2017). Life cycle assessment of integrated wastewater treatment systems with constructed wetlands in rural areas. Journal of Cleaner Production, 148, 527-536.
Maniquiz-Redillas, M. C., Geronimo, F. K. F., & Kim, L. H. (2021). Investigation on the effectiveness of pretreatment in stormwater management technologies: A review. Journal of Environmental Management, 278, 111554.
Martínez-Austria, P. F., Bandala, E. R., & Patiño-Gómez, C. (2021). Temperature and precipitation trends in Mexico and their potential impacts on water availability. International Journal of Environmental Research and Public Health, 18(9), 4669.
Martínez-Tavera, E., Rodríguez-Espinosa, P. F., Shruti, V. C., Sujitha, S. B., Morales-García, S. S., & Muñoz-Sevilla, N. P. (2018). Monitoring the seasonal dynamics of physicochemical parameters from Atoyac River basin (Puebla), Central Mexico: multivariate approach. Environment, Development and Sustainability, 20(2), 511-532.
Masi, F., Rizzo, A., & Regelsberger, M. (2018). The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. Journal of Environmental Management, 216, 275-284.
Mendoza Chavarría, J. F., & Párraga Mendoza, M. E. (2021). Análisis de la contaminación Ambiental por residuos sólidos en la ciudad de Guayaquil. Revista Científica FIPCAEC (Fomento de la investigación y publicación en Ciencias Administrativas, Económicas y Contables), 6(1), 3-25
Morales-Hernández, F., Guzmán-García, X., & Ortiz-Lozano, L. (2022). Increasing occurrence of harmful algal blooms in the coastal waters of Veracruz: Linkages with urban and agricultural pollution. Harmful Algae, 113, 102196.
Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura [UNESCO]. (2017). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2017: Aguas Residuales, el Recurso Desaprovechado. https://unesdoc.unesco.org/ark:/48223/pf0000247647
Pérez-Castresana, G., Castrejón-Godínez, M. L., Ortiz-Hernández, M. L. Garibay-Orijel, C., Casas Flores, S., Folch-Mallol, J. L., & Batista García R. A. (2018). Microbiota of mining environments: Characterization and implications for potential applications. World Journal of Microbiology and Biotechnology, 34(11), 169.
Pérez-Flores, L. S., Barajas-Martínez, J. A., & García-Barrios, R. (2019). Evaluación de la contaminación en el río Tuxpan, Veracruz, México. Revista Internacional de Contaminación Ambiental, 35(4), 767-775.
Ramírez-Sánchez, A., Vázquez-Leal, H., & Hernández-Martínez, L. (2024). Temporal analysis of organic pollutants in the Tántala stream: A case study in Veracruz, Mexico. Environmental Monitoring and Assessment, 196(2), 1-18.
Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural Systems for Waste Management and Treatment (2nd ed.). McGraw-Hill.
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2019). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
Sehar, S., & Nasser, M. (2019). Wastewater treatment of food industries through constructed wetland: a review. International Journal of Environmental Science and Technology, 16(10), 6453-6472.
Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2021). Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment. Elsevier.
Vymazal, J. (2010). Constructed wetlands for wastewater treatment. Water, 2(3), 530-549. https://doi.org/10.3390/w2030530
Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering, 73, 724-751. https://doi.org/10.1016/j.ecoleng.2014.09.034
Vymazal, J. (2018). Does clogging affect long-term removal of organics and suspended solids in gravel-based horizontal subsurface flow constructed wetlands? Chemical Engineering Journal, 331, 663-674.
Wang, M., Zhang, D. Q., Dong, J. W., & Tan, S. K. (2020). Application of constructed wetlands for treating agricultural runoff and agro-industrial wastewater: a review. Hydrobiologia, 847(2), 647-666.
Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., ... & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource Technology, 175, 594-601.
Zhang, D. Q., Jinadasa, K. B. S. N., Gersberg, R. M., Liu, Y., Tan, S. K., & Ng, W. J. (2020). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2019). Journal of Environmental Sciences, 39, 30-43.
Zhao, Y., Qin, X., Guo, J., & Zhang, Y. (2023). Emerging contaminants in water resources: Occurrence, impacts, and treatment challenges. Environmental Science and Pollution Research, 30(15), 34567-34582.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2024 Revista Chapingo Serie Agricultura Tropical