ISSN e: 2007-4026 / ISSN print:2007-3925

       

 
 
 
 
 
 
 
 

Volume 8, Issue 1 January - June 2016

ISSN: ppub: 2007-3925 epub: 2007-4026

Scientific article

Estimation of missing daily precipitation and maximum and minimum temperature records in San Luis Potosí

http://dx.doi.org/10.5154/r.inagbi.2015.11.008

Gallegos-Cedillo, Jesús 1 * ; Arteaga-Ramírez, Ramón 1 ; Vázquez-Peña, Mario Alberto 1 ; Juárez-Méndez, Juan 2

  • 1Universidad Autónoma Chapingo, Ingeniería Agrícola y Uso Integral del Agua . Carretera México-Texcoco km 38.5, Chapingo, Estado de México, C. P. 56230, México.
  • 2 Universidad Autónoma Chapingo, Departamento de Suelos. Carretera México-Texcoco km 38.5, Chapingo, Estado de México, C. P. 56230, México.

Corresponding autor: gallegosjc_1@hotmail.com, (595) 95 21 650

Received: October 29, 2015; Accepted: May 26, 2016

This is an open-access article distributed under the terms of the Creative Commons Attribution License view the permissions of this license

Abstract

Weather stations often have incomplete records for a certain period, due to the absence or replacement of the operator, recording device failures or operational negligence, thereby limiting the carrying out of agro-climatic and hydrological studies. Therefore, the aim of this study was to compare the deductive rational (DR), normal ratio (NR) and US National Weather Service’s inverse square distance (ISD) methods, and then select the best for estimating missing daily precipitation and maximum and minimum temperature records of the weather stations located in San Luis Potosi, Mexico. Six stations were analyzed, of which 15 % of the precipitation (1,489 of 9,862) and 25 % of the maximum and minimum temperature (1,489 of 5,844) information was eliminated. Missing data were generated with the ISD, DR and NR methods, and their evaluation was performed using the RMSE and Willmott index of agreement, d, statistical indices, which indicated that the ISD method has the Willmott index close to one and the mean standard error close to zero; consequently, it was the one used to estimate the missing data from 108 weather stations in San Luis Potosí.

Keywordsstatistical indices; normal ratio; deductive rational; inverse square distance

Introduction

Several tools and techniques have been developed for measuring climatic elements in order to know the current weather (Gutiérrez, García, Magaña, & Escalante, 2007) and provide information for short-term forecasting, statistical analysis, farm support, air and maritime navigation safety, and characterization and classification of the weather and atmospheric state at a particular time and place. A meteorological instrument is the combination of a sensitive element and a system able to convert measurements of this element into a numerical value, which represents the meteorological variable being evaluated. The representative area of a region having meteorological equipment, at which climatic elements can be observed, measured, recorded, concentrated and processed, is commonly referred to as a weather station (Nájera & Arteaga, 1998).

Often weather station records for a certain period are incomplete due to the absence or replacement of the operator, recording device failures or operational negligence (Aparicio, 2007; Campos-Aranda, 1998), which has limited the conducting of agro-climatic studies whose results enable increasing productivity, optimizing resources, reducing the risk of crop loss, planning irrigation and drainage infrastructure in an integrated manner and making weather forecasts (Toro-Trujillo, Arteaga-Ramírez, Vázquez-Peña, & Ibáñez- Castillo, 2015). According to the World Meteorological Organization (OMM, 2011), the planning and implementation of user projects cannot be deferred until there are sufficient meteorological or climatological observations; therefore, estimation is used to expand, fill in or complete the information. It also recommends that the study period be at least 30 years.

Among the most common methods for estimating missing data series are: normal ratio (NR), which is used when the mean annual precipitation of any of the neighboring stations differs by more than 10 % (Aparicio, 2007), and when it differs by less than 10 % it is estimated with the arithmetic average of the records of the neighboring stations (Alfaro & Pacheco, 2000; McCuen, 1998). Aparicio (2007) recommends using at least three auxiliary stations in both cases.

The WMO (2011), Campos-Aranda (2015), Allen, Pereira, Raes, and Smith (2006) and DeGaetano, Eggleston, and Knapp (1995) propose using linear regression (LR) and multiple regression (MR). The latter consists of obtaining a mathematical equation that expresses the relationship between the dependent variable (Y) and the independent one (X), or explanatory variables (X1, X2... Xn), although rarely is a perfect linear relationship observed because the phenomena studied in climatology are usually nonlinear, so both records must be homogeneous; that is, they need to represent the same conditions. When there are no stations surrounding the station with missing information, the missing values are deduced with the deductive rational (DR) method proposed by Campos-Aranda (1998), which allows estimating them with the information provided by the complete years of the same series (Puertas- Orozco, Carvajal-Escobar, & Quintero-Angel, 2011).

The method most used in hydrological and geographical studies is the U.S. National Weather Service’s inverse square distance (ISD) method (Ramírez-Cruz, López- Velasco, & Ibáñez-Castillo, 2015). In this case, the influence of rain at a station for the calculation thereof at any point is inversely proportional to the distance between the station and the auxiliary stations (OMM, 2011). The most significant advantage of the ISD method is that it uses daily data, grouped into periods of five or ten days, monthly or yearly (Teegavarapu & Chandramouli, 2005; Toro-Trujillo et al., 2015).

Other procedures include moving averages (Campos- Aranda, 1998) and autoregressive, logarithmic, and triangulation methods, all based on normality assumptions. According to the WMO (2011), there are also estimation methods known as geostatistics based on theoretical foundations, which are statistical assumptions. The most important are the Kriging and optimal interpolation methods. The former is a spatial interpolation method based on showing the proportion at which the variance changes between points in space, and is expressed in a variogram. These procedures are limited by requiring a certain amount of data to produce a reliable and appropriate variogram (Toro-Trujillo et al., 2015). In addition, Wagner, Fiener, Wilken, Kumar, and Schneider (2012) suggest that these procedures do not represent an improvement over the ISD method.

To evaluate and select the method that best fits the variable analyzed, there are various tests and procedures known as statistical indices, which consist of estimating the error or bias; some of them are: the mean standard error or root mean square error (RMSE), the Willmott index of agreement (d) (Willmott, 1981), the coefficient of determination (R2) and the relative error (RE) (Cervantes-Osornio, Arteaga-Ramírez, Vázquez- Peña, Ojeda-Bustamante, & Quevedo-Nolasco, 2013; Kelso-Bucio, Bâ, Sánchez-Morales, & Reyes-López, 2012; Wright, 2001; Cai, Liu, Lei, & Pereira, 2007).

The aim of this study was to compare the deductive rational (DR), normal ratio (NR) and United States Weather Services’ inverse square distance (ISD) methods, and then select the best one to estimate the missing daily precipitation and maximum and minimum temperature data at weather stations located in San Luis Potosí, Mexico.

Materials and methods

Description of the study area

The state of San Luis Potosí is located in the Central Mexican Plateau. Its extreme geographical coordinates are: 24° 29’ and 21° 10’ north latitude, 98° 20’ and 102° 18’ west longitude. This area accounts for 3.2 % of the country’s total area (Instituto Nacional para el Federalismo y Desarrollo Municipal [INAFED], 2010), and because of its climatic and morphological diversity, the state is divided into four geographical regions: Altiplano, Centro, Media and Huasteca (Instituto Nacional de Estadística y Geografía [INEGI], 2007).

Climatological databases

The databases used were: ERIC III 2.0 (rapid climatological information extractor) administered by the Mexican Institute of Water Technology (IMTA, 2009) and the network of weather stations operated by the National Water Commission (CONAGUA, 2015); daily precipitation (1984-2010 period) and maximum and minimum temperature (1995-2010 period) records were obtained from both.

Prior analysis of information from 108 weather stations

Since not all the stations contain records of the climatological variables under study and many lack information in different periods, those stations whose precipitation and maximum and minimum temperature records were more than 85 % complete were selected. Years with no data or few records were removed. In addition, the data series were updated to 2010, with the values obtained from the National Meteorological Service (SMN) database, called KMZ, an extension that allows downloading up-to-date weather records. Finally, 27 years were considered as the study period for precipitation and 16 years for maximum and minimum temperature.

Of the total of 190 weather stations, 81 located in San Luis Potosi were examined, plus some neighboring ones in Tamaulipas, Zacatecas, Nuevo León, Querétaro, Guanajuato, Hidalgo and Veracruz, of which 27 were selected for analysis.

Figure 1 shows the percentage of daily information obtained from the precipitation and maximum and minimum temperature records of the 108 weather stations. In the case of precipitation, two neighboring stations with a lesser amount of information were taken to correctly delimit San Luis Potosí. Similarly, for maximum temperature, four stations with less than 85 % information were taken, while the minimum temperature records have the required information. For all three cases the same selected stations were taken.

Figure 1. Percentage of historical information by weather station.

Figure 2 shows the location and distribution of the 108 weather stations. It also shows the analyzed and auxiliary stations, which served to define the best method for deducing the missing data.

Figure 2. Location of the study area and the network of weather stations.

Selection of weather stations

Six weather stations (Table 1), two in the Centro region, one from each of the other regions (Altiplano, Medio and Huasteca) and one of the stations bordering the state, were selected in order to delimit and represent the study area. In each of these 15 % of the precipitation (1,489 of 9,862 from 27 years) and 25 % of the maximum and minimum temperature (1,489 to 5,844 from 16 years) information was removed; later, in order to generate the missing data, records from the respective auxiliary stations corresponding to each analyzed station were used.

Table 1. Distance between the analyzed and auxiliary stations (km).

Station Auxiliary stations
Ocampo, Ocampo,
Gto.: 11050
Distance (km)
Pino Suarez,
Zac.:
32127 52.34
Armadillo de los Infante,
S. L. P.: 24004 107.5
El Vergel, San Luis de la Paz,
Gto.:
11161
87.67
El Salto, Cd. del
Maíz, S. L. P.:
24027
Distance (km)
Abritas, El Naranjo,
S. L. P.:
24016
10.05
San Pablo, Tula, Tamps.: 28091 48.34 La Boquilla, Ocampo,
Tamps.:
28043
26.33
Los Pilares,
S. L. P.:
24038 Distance (km)
Armadillo de
los Infante, SLP:
24004
49.64
Mexquitic de Carmona, SLP: 24042 19.57 El Grito,
Moctezuma, S.L.P.:
24021
24.67
Espíritu Santo,
Pinos, Zac.:
32187
40.86
Papagayos,
Cd. del Maíz,
S. L. P.: 24049
Distance (km)
Cd. Del Maíz,
S. L. P.:
24011
15.68
Abritas, El Naranjo, S. L. P.: 24016 13.72 Álvaro Obregón, Cd. del Maíz,
S. L. P.:
24013
26.17
Tierranueva,
S. L. P.:
24093 Distance (km)
Bledos, Villa de Reyes,
S. L. P.:
24163
59.5
San José Alburquerque, Santa María del Rio, S. L. P.: 24067 21.56 El Vergel, San
Luis de la Paz, Gto.:
11161
26.02
Xichu, Gto.:
11083
64.02
Vanegas,
S. L. P.:
24094
Distance (km)
San Tiburcio,
Mazapil, Zac.:
32078
61.78
Las Margaritas, Dr. Arroyo, N. L.: 19151 68.55 San José de Coronado,
Real de Catorce, S. L. P.:
24165
68.55

Methods for estimating missing data

The methods used were: deductive rational (DR), proposed by Campos-Aranda (1998), which is determined from the values of the record itself, and normal ratio (NR) (Aparicio, 2007), represented in Equation 1.

P X = 1 n N x N a P a + N x N b P b + + N x N n P n .

where PX = missing precipitation at station x, Nx, Na, Nb,…Nn = average daily precipitation of the missing station (x) and the auxiliary stations a, b,…n (averages of all historical series) and Pa, Pb,…Pn = precipitation recorded at the auxiliary stations of the day where the datum is missing at station x.

The U.S. National Weather Service’s inverse square distance (ISD) method (Chow, Maidment, & Mays, 1996), represented in the following equation, was also used:

P X = P i W i W i .

where: PX = lost datum at station x and Pi = existing datum at auxiliary station i, for which i = 1, 2,… n for the same day.

In Equation 3, Di = distance between each neighboring auxiliary station and station x where the lost datum is presented. Campos-Aranda (1998) recommend using four auxiliary stations (the nearest), so that each remains located in one of the quadrants that define the coordinate axes that pass through the incomplete station, generally north-south and east-west.

W i = 1 D i 2   .   .

Statistical indices to evaluate the error estimate

Three statistical indices were used: the Willmott index of agreement (d) (Willmott, 1981), mean standard error or root mean square error (RMSE) (Rivas & Carmona, 2010) and the coefficient of determination (R2) (Cervantes-Osornio et al., 2013; Kelso-Bucio et al., 2012; Wright, 2001), which are defined as:

d = 1 - i = 1 N a i - t i 2 i = 1 N a i - t - + t i - t - 2 .

R M S E = i = 1 N a i - t i 2 N 1 2 .

R 2 = i = 1 N a i - a - t i - t - 2 i = 1 N a i - a - 2 i = 1 N t i - t - 2 .

where R2 = coefficient of determination, ai = datum estimated by the method, ti = observed datum, N = number of observations or estimates, = average of the data estimated by the method and = average of the observed data.

If RMSE = 0 and R2 = d = 1, then there is a perfect fit. The results are excellent when d ≥ 0.95 and R2 > 0.80 (Cai et al., 2007; Ruiz-Álvarez, Arteaga-Ramírez, Vázquez-Peña, Ontiveros-Capurata, & López-López, 2012).

Results and discussion

Table 2 shows a summary of the statistical precipitation indices, and a better fit with the ISD method with an RMSE average of 38.7 mm is observed. The d values on average were 0.85, 0.68 and 0.68 for ISD, DR and NR, respectively, which have no values greater than 0.95 as recommended by Cai et al. (2007) and Ruiz-Álvarez et al. (2012); however, the ISD method shows a better fit.

Table 2. Statistical fit indices of the methods for estimating missing precipitation data records.

Station ISD DR NR
RMSE D R2 RMSE d RMSE d R2
Ocampo, Ocampo: 11050 19.503 0.917 0.144 41.672 0.556 32.254 0.865 0.166
El Salto, Cd. del Maíz: 24027 73.682 0.911 0.216 84.242 0.861 80.477 0.926 0.376
Los Pilares, San Luis Potosí :24038 21.004 0.890 0.363 29.509 0.672 71.649 0.587 0.271
Papagayos, Cd. del Maíz: 24049 61.666 0.918 0.298 97.865 0.856 117.633 0.869 0.173
Tierranueva: 24093 28.728 0.845 0.335 42.390 0.638 41.627 0.728 0.184
Vanegas : 24094 27.870 0.615 0.030 24.206 0.485 78.453 0.129 0.012
Average 38.742 0.849 0.231 53.314 0.678 70.349 0.684 0.197

On the other hand, stations 11050, 24027, 24038, 24049 and 24093 show a lower RMSE value with ISD, compared with that obtained with DR and NR, while the data analyzed at station 24094, according to the RMSE statistic, indicate a lower error with the DR method.

In a study conducted in Colombia, Toro-Trujillo et al. (2015) report similar values among the statistical indices when analyzing the precipitation variable, but a better Willmott index of agreement (d) result with the ISD method is highlighted; therefore, they propose it as the best method for estimating missing data, a situation also presented in this study, since the best estimate was obtained with the ISD method. Moreover, considering that R2 averaged 0.231 and 0.197 for ISD and NR, respectively, it can be deduced that there is little strength in the linear relationship between the estimated and observed value, mainly because precipitation is a discrete variable with a high frequency of values close to zero.

Figure 3 illustrates the relationship between observed and estimated precipitation values, with the ISD and NR methods at weather stations 24027 El Salto, 24038 Los Pilares and 24049 Papagayos. The ISD method has, on average, a better fit of the estimated values with respect to the observed ones, which is consistent with the results obtained by Hubbard and You (2005), Eischeid, Pasteris, Diaz, Plantico, and Lott (2000) and You, Hubbard, and Goddard (2008). Moreover, Teegavarapu and Chandramouli (2005) mention that the ISD method better estimates the observed data, plus it can be used in any time period, i.e., in daily, monthly and annual data.

Figure 3. Comparison between the estimated and observed precipitation value.

Figure 4 shows the relationship between the observed and estimated maximum temperature with the ISD and NR methods; similar behavior can be observed in the two methods, possibly because temperature is a more localized variable (Toro-Trujillo et al., 2015; You et al., 2008).

Figure 4. Comparison between the estimated and observed maximum temperature value.

Table 3 shows the statistical indices calculated with the three described methods to determine which one estimates more accurately the missing maximum temperature data records. It also shows that the values are similar to one other, although the RMSE results are higher than those with the ISD method, followed by the DR and finally the NR methods. According to the Willmott index, the NR method has a better fit because, in general, it has a higher value at the stations, followed by the DR and ISD methods, respectively.

Table 3. Statistical fit indices of the methods for estimating missing maximum temperature data records.

Station ISD DR NR
RMSE D R2 RMSE d RMSE d R2
Ocampo, Ocampo: 11050 3.264 0.685 0.343 3.620 0.582 1.761 0.843 0.303
El Salto, Cd. del Maíz: 24027 3.744 0.769 0.377 2.692 0.803 2.670 0.880 0.540
Los Pilares, San Luis Potosí :24038 3.938 0.707 0.493 2.282 0.887 3.244 0.769 0.501
Papagayos, Cd. del Maíz: 24049 2.823 0.751 0.251 2.177 0.845 1.816 0.864 0.285
Tierranueva: 24093 1.277 0.937 0.673 1.933 0.888 1.133 0.952 0.641
Vanegas : 24094 2.905 0.801 0.467 2.194 0.891 1.938 0.897 0.463
Average 2.992 0.780 0.434 2.150 0.866 2.094 0.867 0.455

At stations 11050, 24038, 24049 and 24093, the coefficient of determination R2 is greater with the ISD method, and with the others it is greater with NR, although the R2 are very similar. Campos-Aranda (2005) recommends against using low linear relationship methods if the coefficients of determination do not have values greater than 0.8; therefore, because the present study presents a low linear relationship, it is advisable to use either the ISD or NR methods, since they have similar statistics.

Figure 5 compares the observed and estimated minimum temperature with the ISD and NR methods, at the stations studied.

Figure 5. Comparison between the estimated and observed minimum temperature.

Table 4 shows the statistics that allow identifying the method that has the best fit to the minimum temperature data. The Willmott index is higher with DR at stations 24027, 24049 and 24094, with NR at 11050 and 24038, and with ISD at 24093. It also shows that the d value varies in a very similar way in the three methods. Stations 24027, 24049 and 24094 reflected lower RMSE values with the DR method, whereas 24038 and 24093 did so with the ISD method, and 11050 with the NR method.

Table 4. Statistical fit indices of the methods for estimating missing minimum temperature data records.

Station ISD DR NR
RMSE d R2 RMSE D RMSE d R2
Ocampo, Ocampo: 11050 1.019 0.975 0.794 1.031 0.968 0.944 0.978 0.764
El Salto, Cd. del Maíz: 24027 3.097 0.849 0.447 1.921 0.948 1.979 0.944 0.706
Los Pilares, San Luis Potosí: 24038 1.450 0.967 0.844 1.578 0.962 1.494 0.970 0.795
Papagayos, Cd. del Maíz: 24049 3.710 0.761 0.327 2.661 0.854 4.110 0.755 0.319
Tierranueva: 24093 1.261 0.969 0.810 1.833 0.942 2.275 0.925 0.711
Vanegas : 24094 3.307 0.801 0.441 1.569 0.960 1.829 0.947 0.610
Average 2.318 0.887 0.611 1.766 0.939 2.105 0.920 0.651

Conclusions

The methods used to estimate the missing precipitation data records allowed identifying the one which best estimates the results, and according to the statistical indicators it is the ISD method; therefore, for precipitation, this is the best alternative when data are available for the same period at auxiliary stations. The results obtained by analyzing the maximum and minimum temperature data indicate little variability among methods, as the calculated data are similar to those observed; therefore, both the behavior and errors are very similar with all three methods. Accordingly, the U.S. National Weather Service’s inverse square distance (ISF) method is an efficient alternative for completing missing data records in a continuous series; therefore, it was the method used to estimate missing data at 108 weather stations in the state of San Luis Potosí.

References

Alfaro, R., & Pacheco, R. (2000). Aplicación de algunos métodos de relleno a series anuales de lluvia de diferentes regiones de Costa Rica. Top. Meteor. Oceanogr, 7(1), 1-20.

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos (pp. 323). Roma: Ed. FAO.

Aparicio, M. F. J. (2007). Fundamentos de hidrología de superficie (pp. 304). México, D.F.: Editorial Limusa.

Cai, J., Liu, Y., Lei, T., & Pereira, S. L. (2007). Estimating reference evapotranspiration with the FAO Penman- Monteith equation using daily weather forecast messages. Agricultural and Forest Meteorology, 145(1), 22- 35. doi: 10.1016/j.agrformet.2007.04.012

Campos-Aranda, D. F. (2015). Estimación simultanea de datos hidrológicos anuales faltantes en múltiples sitios. Revista Ingeniería Investigación y Tecnología, 16(2), 295- 306. doi: 10.1016/j.riit.2015.03.013

Campos-Aranda, D. F. (2005). Agroclimatología cuantitativa de cultivos (pp. 320). México, D.F.: Trillas.

Campos-Aranda, D. F. (1998). Procesos del ciclo hidrológico (pp. 529). México, San Luis Potosí: Editorial Universitaria Potosina. Universidad Autónoma de San Luis Potosí.

Cervantes-Osornio, R., Arteaga-Ramírez, R., Vázquez-Peña, M. A., Ojeda-Bustamante, W., & Quevedo-Nolasco, A. (2013). Modelos Hargreaves Priestley-Taylor y redes neuronales artificiales en la estimación de la evapotranspiración de referencia. Revista Ingeniería Investigación y Tecnología , 16(2), 163-176. Retrieved from http://pruebaredalyc. redalyc.org/articulo.oa?id=40426155002

Chow, V. T, Maidment, D. R., & Mays, L. W. (1996). Hidrología aplicada (pp. 583). Colombia, Bogotá: McGraw Hill

Comisión Nacional del Agua (CONAGUA). (2015). Red de estaciones climatológicas: Estacionesclimatológicas.KML. Servicio Meteorológico Nacional (SMN)-Comisión Nacional del Agua (CONAGUA). México. D.F.: Author.

DeGaetano, A. T., Eggleston, K. L., & Knapp, W. W. (1995). A method to estimate missing daily maximum and minimum temperature observations. Journal of Applied Meteorology, 34(2), 371-380. doi: 10.1175/1520- 0450-34.2.371

Eischeid, J. K., Pasteris, P. A., Diaz, H. F., Plantico, M. S., & Lott, N. J. (2000). Creating a serially complete, national daily time series of temperature and precipitation for the Western United States. Journal of Applied Meteorology , 39(9), 1580-1591. doi: 10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2

Gutiérrez, L. W., García, E. M., Magaña, R. V. O., & Escalante, G. J. A. (2007). Diseño y construcción de un globo meteorológico cautivo instrumentado. Ingeniería y Ciencia, 3(5), 29-42. Retrieved from http://www. redalyc.org/articulo.oa?id=83530502

Hubbard, K. G., & You, J. (2005). Sensitivity Analysis of Quality Assurance Using the Spatial Regression Approach. A case study of the Maximum/Minimum air temperature. Journal of Atmospheric and Oceanic Technology, 22(10), 1520-1530. doi: 10.1175/JTECH1790.1

Instituto Mexicano de Tecnología del Agua (IMTA). (2009). ERIC III: Extractor rápido de información climatológica (versión 2.0 . Disco). Comisión Nacional del Agua- Secretaria de Medio Ambiente y Recursos Naturales- IMTA. Jiutepec, Morelos, México: Author.

Instituto Nacional de Estadística y Geografía (INEGI). (2007). Regiones agropecuarias de San Luis Potosí (pp. 69). México: Author.

Instituto Nacional para el Federalismo y Desarrollo Municipal (INAFED). (2010). Enciclopedia de los Municipios y Delegaciones de México; San Luis Potosí. 09-04-2015. Retrieved from Retrieved from http://www.inafed.gob.mx/ work/enciclopedia/EMM24sanluispotosi/index.html

Kelso-Bucio, H. A., Bâ, K. M., Sánchez-Morales, S., & Reyes- López, D. (2012). Calibración del exponente de la ecuación Hargreaves-ETo en los estados de Chiapas, Oaxaca, Puebla y Veracruz, México. Agrociencia, 46(3), 221-229. Retrieved from http://www.scielo.org.mx/pdf/agro/v46n3/v46n3a2.pdf

McCuen, R. H. (1998). Hydrologic Analysis and Design (pp. 833). Departament of Civil Engineering University of Maryland, New Jersey: Pearson Prentice-Hall.USA.

Nájera, M. N. L., & Arteaga, R. R. (1998). Antología Agroclimatología (pp. 230). México: Dirección General de Educación Tecnológica Agropecuaria (DGETA).

Organización Meteorológica Mundial (OMM). (2011). Guía de prácticas climatológicas (pp. 128). Ginebra: Author.

Puertas-Orozco, O. L., Carvajal-Escobar, Y., & Quintero-Angel, M. (2011). Estudio de tendencias de precipitación mensual en la cuenca alta-media del río cauca, Colombia. Dyna, 78(169), 112-120. Retrieved from http://www.redalyc.org/articulo.oa?id=49622390013

Ramírez-Cruz, H., López-Velasco, O., & Ibáñez-Castillo, L. A. (2015). Estimación mensual de intensidad de la lluvia en 30 minutos a partir de datos pluviométricos. Terra Latinoamericana, 33(2), 151-159. Retrieved from https://www.researchgate.net/publication/279450618

Rivas, R., & Carmona, F. (2010). La ecuación de Priestley- Taylor aplicada a nivel de píxel: una alternativa para estudios detallados de cuencas. Boletín Geológico y Minero, 121(4), 401-412. Retrieved from http://www.igme.es/Boletin/2010/121_4/8-ARTICULO%205.pdf

Ruiz-Álvarez, O., Arteaga-Ramírez, R., Vázquez-Peña, M. A., Ontiveros-Capurata, R. E., & López-López, R. (2012). Balance hídrico y clasificación climática del estado de Tabasco, México. Universidad y Ciencia, Trópico Húmedo, 28(1), 1-14. Retrieved from https://www.researchgate.net/publication/262548360

Teegavarapu, R. S., & Chandramouli, V. (2005). Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. Journal of Hydrology, 312(1-4), 191- 206. doi: 10.1016/j.jhydrol.2005.02.015

Toro-Trujillo, A. M., Arteaga-Ramírez, R., Vázquez-Peña, M. A., & Ibáñez-Castillo, L. A. (2015). Relleno de series de precipitación, temperatura mínima, máxima de la región norte del Urabá Antioqueño. Revista Mexicana de Ciencias Agrícolas, 6(2), 577-588. Retrieved from https://www.researchgate.net/publication/277248839

Wagner, D. P., Fiener, P., Wilken, F., Kumar, S., & Schneider, K. (2012). Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scare regions. Journal of Hydrology , 464, 388-400. doi: 10.1016/j.jhydrol.2012.07.026

Willmott, C. J. (1981). On the validation of models. Physical geography, 2(2), 184-194. doi: 10.1080/02723646.1981.10642213

Wright, J. (2001). Correlaciones de la fracción difusa. Top. Meteor. Oceanog, 8(1), 15-18. Retrieved from http://www.imn.ac.cr/publicaciones/revista/2001/Julio/3-CWrith-Julio01.pdf

You, J. S., Hubbard, K. G., & Goddard, S. (2008). Comparison of methods for spatially estimating station temperatures in a quality control system. International Journal of Climatology, 28(6), 777-787. doi: 10.1002/joc.1571

Figures:

Figure 1. Percentage of historical information by weather station.
Figure 2. Location of the study area and the network of weather stations.
Figure 3. Comparison between the estimated and observed precipitation value.
Figure 4. Comparison between the estimated and observed maximum temperature value.
Figure 5. Comparison between the estimated and observed minimum temperature.

Tables:

Table 1. Distance between the analyzed and auxiliary stations (km).
Station Auxiliary stations
Ocampo, Ocampo,
Gto.: 11050
Distance (km)
Pino Suarez,
Zac.:
32127 52.34
Armadillo de los Infante,
S. L. P.: 24004 107.5
El Vergel, San Luis de la Paz,
Gto.:
11161
87.67
El Salto, Cd. del
Maíz, S. L. P.:
24027
Distance (km)
Abritas, El Naranjo,
S. L. P.:
24016
10.05
San Pablo, Tula, Tamps.: 28091 48.34 La Boquilla, Ocampo,
Tamps.:
28043
26.33
Los Pilares,
S. L. P.:
24038 Distance (km)
Armadillo de
los Infante, SLP:
24004
49.64
Mexquitic de Carmona, SLP: 24042 19.57 El Grito,
Moctezuma, S.L.P.:
24021
24.67
Espíritu Santo,
Pinos, Zac.:
32187
40.86
Papagayos,
Cd. del Maíz,
S. L. P.: 24049
Distance (km)
Cd. Del Maíz,
S. L. P.:
24011
15.68
Abritas, El Naranjo, S. L. P.: 24016 13.72 Álvaro Obregón, Cd. del Maíz,
S. L. P.:
24013
26.17
Tierranueva,
S. L. P.:
24093 Distance (km)
Bledos, Villa de Reyes,
S. L. P.:
24163
59.5
San José Alburquerque, Santa María del Rio, S. L. P.: 24067 21.56 El Vergel, San
Luis de la Paz, Gto.:
11161
26.02
Xichu, Gto.:
11083
64.02
Vanegas,
S. L. P.:
24094
Distance (km)
San Tiburcio,
Mazapil, Zac.:
32078
61.78
Las Margaritas, Dr. Arroyo, N. L.: 19151 68.55 San José de Coronado,
Real de Catorce, S. L. P.:
24165
68.55
Table 2. Statistical fit indices of the methods for estimating missing precipitation data records.
Station ISD DR NR
RMSE D R2 RMSE d RMSE d R2
Ocampo, Ocampo: 11050 19.503 0.917 0.144 41.672 0.556 32.254 0.865 0.166
El Salto, Cd. del Maíz: 24027 73.682 0.911 0.216 84.242 0.861 80.477 0.926 0.376
Los Pilares, San Luis Potosí :24038 21.004 0.890 0.363 29.509 0.672 71.649 0.587 0.271
Papagayos, Cd. del Maíz: 24049 61.666 0.918 0.298 97.865 0.856 117.633 0.869 0.173
Tierranueva: 24093 28.728 0.845 0.335 42.390 0.638 41.627 0.728 0.184
Vanegas : 24094 27.870 0.615 0.030 24.206 0.485 78.453 0.129 0.012
Average 38.742 0.849 0.231 53.314 0.678 70.349 0.684 0.197
Table 3. Statistical fit indices of the methods for estimating missing maximum temperature data records.
Station ISD DR NR
RMSE D R2 RMSE d RMSE d R2
Ocampo, Ocampo: 11050 3.264 0.685 0.343 3.620 0.582 1.761 0.843 0.303
El Salto, Cd. del Maíz: 24027 3.744 0.769 0.377 2.692 0.803 2.670 0.880 0.540
Los Pilares, San Luis Potosí :24038 3.938 0.707 0.493 2.282 0.887 3.244 0.769 0.501
Papagayos, Cd. del Maíz: 24049 2.823 0.751 0.251 2.177 0.845 1.816 0.864 0.285
Tierranueva: 24093 1.277 0.937 0.673 1.933 0.888 1.133 0.952 0.641
Vanegas : 24094 2.905 0.801 0.467 2.194 0.891 1.938 0.897 0.463
Average 2.992 0.780 0.434 2.150 0.866 2.094 0.867 0.455
Table 4. Statistical fit indices of the methods for estimating missing minimum temperature data records.
Station ISD DR NR
RMSE d R2 RMSE D RMSE d R2
Ocampo, Ocampo: 11050 1.019 0.975 0.794 1.031 0.968 0.944 0.978 0.764
El Salto, Cd. del Maíz: 24027 3.097 0.849 0.447 1.921 0.948 1.979 0.944 0.706
Los Pilares, San Luis Potosí: 24038 1.450 0.967 0.844 1.578 0.962 1.494 0.970 0.795
Papagayos, Cd. del Maíz: 24049 3.710 0.761 0.327 2.661 0.854 4.110 0.755 0.319
Tierranueva: 24093 1.261 0.969 0.810 1.833 0.942 2.275 0.925 0.711
Vanegas : 24094 3.307 0.801 0.441 1.569 0.960 1.829 0.947 0.610
Average 2.318 0.887 0.611 1.766 0.939 2.105 0.920 0.651