Revista Chapingo Serie Ciencias Forestales y del Ambiente
Implicaciones operativas de la resolución espacial de imágenes de drones en el mapeo de la vegetación para el manejo forestal
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

cobertura forestal
clasificación de vegetación
imágenes multiespectrales
índice kappa
Random Forest

Cómo citar

Ordóñez-Prado, C., Valdez-Lazalde, J. R., Flores-Magdaleno, H., Ángeles-Pérez, G., Santos-Posadas, H. M. de los, & Buendía-Rodríguez, E. (2024). Implicaciones operativas de la resolución espacial de imágenes de drones en el mapeo de la vegetación para el manejo forestal. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(2), 1–18. https://doi.org/10.5154/r.rchscfa.2023.06.040

Resumen

Introducción. Los drones aportan imágenes de alta resolución espacial para el seguimiento de la dinámica de la vegetación en bosques bajo manejo forestal; sin embargo, existen dudas sobre la forma más eficaz de utilizarlas con respecto a la resolución espacial.

Objetivo. Determinar la resolución espacial más apropiada de las imágenes multiespectrales obtenidas por drones, para mapear los tipos de cobertura del suelo en bosques templados bajo manejo forestal de Hidalgo, México.

Materiales  y  métodos.  Las  imágenes  espectrales  se  preprocesaron  en  resoluciones  espaciales  desde

0.2 hasta 2.5 m, a intervalos de 0.1 m. La cobertura de pinos, encinos, otras latifoliadas, herbáceas y suelo desnudo se clasificaron con el algoritmo Random Forest. El efecto de la resolución espacial en la clasificación de la cobertura terrestre se evaluó mediante la prueba no paramétrica de Kruskal-Wallis seguida de una comparación post-hoc Mann-Whitney-Wilcoxon (P < 0.05). Los errores de clasificación de las clases de cobertura se analizaron gráficamente.

Resultados. Las imágenes de 0.2 m de resolución espacial proporcionaron la mayor precisión de clasificación de la cobertura del suelo (96 %), pero fue estadísticamente similar que la de 0.7 m (P = 0.3984). La precisión más baja (82 %) se obtuvo con imágenes de 2.5 m de resolución espacial. Los errores de omisión y comisión fueron menores y constantes en las clasificaciones con imágenes de resolución espacial de 0.2 a 1.2 m.

Conclusión. Las imágenes multiespectrales (0.7 m de resolución), adquiridas con un dron de ala fija, permitieron la clasificación precisa de los tipos de cobertura y la distribución espacial exacta de pinos, encinos y otras especies de latifoliadas de un bosque templado bajo manejo forestal.

https://doi.org/10.5154/r.rchscfa.2023.06.040
PDF

Citas

Abraira, V. (2001). El índice kappa. SEMERGEN, 27(5), 247—249. https://doi.org/10.1016/S1138-3593(01)73955-X

Ahmed, O. S., Shemrock, A., Chabot, D., Dillon, C., Williams, G., Wasson, R., & Franklin, S. E. (2017). Hierarchical land cover and vegetation classification using multispectral data acquired from an unmanned aerial vehicle. International Journal of Remote Sensing, 38(8-10), 2037—2052. https://doi.org/10.1080/01431161.2017.1294781

Alanís-Rodríguez, E., Jiménez-Pérez, J., Valdecantos-Dema, A., Pando- Moreno, M., Aguirre-Calderón, O., & Treviño-Garza, E. J. (2011). Caracterización de regeneración leñosa post-incendio de un ecosistema templado del parque ecológico Chipinque, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(1), 31—39. https://doi.org/10.5154/r.rchscfa.2010.05.032

Aliaga, V. S., Ferrelli, F., Bohn, V. Y., & Piccolo, M. C. (2016). Utilización de imágenes satelitales para comprender la dinámica lagunar en la Región Pampeana. Revista de Teledetección, 46, 1—14. https://doi.org/10.4995/raet.2016.5196

Al-Kaff, A., Madridano, Á., Campos, S., García, F., Martín, D., & de la Escalera, A. (2020). Emergency support unmanned aerial vehicle for forest fire surveillance. Electronics, 9(260), 1—14. https://doi.org/10.3390/electronics9020260

Baena, S., Moat, J., Whaley, O., & Boyd, D. S. (2017). Identifying species from the air: UAVs and the very high resolution challenge for plant conservation. PLoS ONE, 12(11), e0188714. https://doi.org/10.1371/journal.pone.0188714

Banu, T. P., Borlea, G. F., & Banu, C. (2016). The use of drones in forestry. Journal of Environmental Science and Engineering B, 5, 557—562. https://doi.org/10.17265/2162-5263/2016.11.007

Bhatnagar, S., Gill, L., & Ghosh, B. (2020). Drone image segmentation using machine and deep learning for mapping raised bog vegetation communities. Remote Sensing, 12(16), 2602. https://doi.org/10.3390/rs12162602

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

Cárdenas-Tristán, A., Treviño-Garza, E. J., Aguirre-Calderón, O. A., Jiménez-Pérez, J., González-Tagle, M. A., & Antonio- Némiga, X. (2013). Uso de tecnologías espaciales para evaluar la calidad de muestras vectoriales de la producción de cartografía. Investigaciones Geográficas, (80), 111—128. https://doi.org/10.14350/rig.36649

Chávez-Aguilar, G., Pérez-Suárez, M., Gayosso-Barragán, O., Á López- López, M., & Ángeles-Pérez, G. (2023). Forest management accelerates aboveground biomass accumulation in a temperate forest of Central Mexico. Revista Chapingo Serie Ciencias Forestales, 29(1), 16—33. https://doi.org/10.5154/r. rchscfa.2022.03.014

Chuvieco, E. (2020). Fundamentals of satellite remote sensing: An environmental approach (3rd. ed.). CRC Press.

Coelho-Eugenio, F., Badin, T. L., Fernandes, P., Mallmann, C. L., Schons, C., Schuh, M. S., Soares Pereira, R., Aparecida fantinel, R., & Pereira da Silva, S. D. (2021). Remotely Piloted Aircraft Systems (RPAS) and machine learning: A review in the context of forest science. International Journal of Remote Sensing, 42(21), 8207—8235. https://doi.org/10.1080/01431161.2021.1975845

Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices (2nd ed.). CRC Press. https://doi.org/10.1201/9781420055139

Díaz-Varela, R. A., Calvo Iglesias, S., Cillero Castro, C., & Díaz Varela, E. R. (2018). Sub-metric analisis of vegetation structure in bog- heathland mosaics using very high resolution rpas imagery. Ecological Indicators, 89, 861—873. https://doi.org/10.1016/j. ecolind.2017.11.068

Fernández-Lozano, J., & Gutiérrez-Alonso, G. (2016). Aplicaciones geológicas de los drones. Revista de la Sociedad Geológica de España, 29(1), 89—105. https://www.researchgate.net/publication/303696594_Aplicaciones_Geologicas_de_los_Drones__Geological_Applications_of_UAVs

Franzini, M., Ronchetti, G., Sona, G., & Casella, V. (2019). Geometric and radiometric consistency of parrot sequoia multispectral imagery for precision agriculture applications. Applied Sciences, 9(24), 1—24. https://doi.org/10.3390/app9245314

Fraser, B. T., & Congalton, R. G. (2021). Estimating primary forest attributes and rare community characteristics using unmanned aerial systems (UAS): An enrichment of conventional forest inventories. Remote Sensing, 13(15), 1—22. https://doi.org/10.3390/rs13152971

Furukawa, F., Laneng, L. A., Ando, H., Yoshimura, N., Kaneko, M., & Morimoto, J. (2021). Comparison of RGB and multispectral unmanned aerial vehicle for monitoring vegetation coverage changes on a landslide area. Drones, 5(97), 1—14. https://doi.org/10.3390/drones5030097

Gallardo-Salazar, J. L., Pompa-García, M., Aguirre-Salado, C. A., López- Serrano, P. M., & Meléndez-Soto, A. (2020). Drones: Tecnología con futuro promisorio en la gestión forestal. Revista Mexicana de Ciencias Forestales, 11(61). https://doi.org/10.29298/rmcf. v11i61.794

García-Martínez, H., Flores-Magdaleno, H., Ascencio-Hernández, R., Khalil-Gardezi, A., Tijerina-Chávez, L., Mancilla-Villa, O. R., & Vázquez-Peña, M. A. (2020). Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB Images acquired with unmanned aerial vehicles. Agriculture, 10(277), 1—24. https://doi.org/10.3390/agriculture10070277

Guevara-Bonilla, M., Meza-Leandro, A. S., Esquivel-Segura, E. A., Arias- Aguilar, D., Tapia-Arenas, A., & Masís Meléndez, F. (2020). Uso de vehículos aéreos no tripulados (VANTs) para el monitoreo y manejo de los recursos naturales: Una síntesis. Revista Tecnología en Marcha, 33(4), 77–88. https://doi.org/10.18845/tm.v33i4.4528

Hamilton, G., Corcoran, E., Denman, S., Hennekam, M. E., & Koh, L. P. (2020). When you can’t see the koalas for the trees: Using drones and machine learning in complex environments. Biological Conservation, 247, 108598. https://doi.org/10.1016/j. biocon.2020.108598

Hernández-Díaz, J. C., Corral-Rivas, J. J., Quiñones-Chávez, A., Bacon- Sobbe, J. R., & Vargas-Larreta, B. (2016). Evaluación del manejo forestal regular e irregular en bosques de la Sierra Madre Occidental. Madera y Bosques, 14(3), 25—41. https://doi.org/10.21829/myb.2008.1431205

Ivosevic, B., Han, Y.-G., Cho, Y., & Kwon, O. (2015). The use of conservation drones in ecology and wildlife research. Journal of Ecology and Environment, 38(1), 113—118. https://doi.org/10.5141/ecoenv.2015.012

Jiang, Y., Zhang, L., Yan, M., Qi, J., Fu, T., Fan, S., & Chen, B. (2021). High-resolution mangrove forests classification with machine learning using worldview and UAV hyperspectral data. Remote Sensing, 13(8), 1529. https://doi.org/10.3390/ rs13081529

Kedia, A. C., Kapos, B., Liao, S., Draper, J., Eddinger, J., Updike, C., & Frazier, A. E. (2021). An integrated spectral–structural workflow for invasive vegetation mapping in an arid region using drones. Drones, 5(1), 19. https://doi.org/10.3390/drones5010019

Khan, M. S. I., Ohlemüller, R., Maloney, R. F., & Seddon, P. J. (2021). Monitoring dynamic braided river habitats: Applicability and efficacy of aerial photogrammetry from manned aircraft versus unmanned aerial systems. Drones, 5(2), 39. https://doi.org/10.3390/drones5020039

Liu, M., Yu, T., Gu, X., Sun, Z., Yang, J., Zhang, Z., Mi, X., Cao, W., & Li, J. (2020). The impact of spatial resolution on the classification of vegetation types in highly fragmented planting areas based on unmanned aerial vehicle hyperspectral images. Remote Sensing, 12(146), 1—25. https://doi.org/10.3390/rs12010146

Mellor, A., Haywood, A., Stone, C., & Jones, S. (2013). The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sensing, 5(6), 2838— 2856. https://doi.org/10.3390/rs5062838

Medina-Merino, R. F., & Ñique-Chacón, C. I. (2017). Bosques aleatorios como extensión de los árboles de clasificación con los programas R y Python. Interfases, 10(010), 165. https://doi.org/10.26439/interfases2017.n10.1775

Ortiz-Reyes, A. D., Valdez-Lazalde, J. R., De los Santos-Posadas, H. M., Ángeles-Pérez, G., Paz-Pellat, F., & Martínez-Trinidad, T. (2015). Inventory and cartography of forest variables derived from LiDAR data: Comparison of methods. Madera y Bosques, 21(3), 111—128. https://www.scielo.org.mx/pdf/mb/v21n3/ v21n3a8.pdf

Paneque-Gálvez, J., McCall, M., Napoletano, B., Wich, S., & Koh, L. (2014). Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5, 1481—1507. https://doi.org/10.3390/f5061481

Pérez-López, R. I., González-Espinosa, M., Ramírez-Marcial, N., & Toledo-Aceves, T. (2020). Efectos del “Método de Desarrollo Silvícola” sobre la diversidad arbórea en bosques húmedos de montaña del norte de Chiapas, México. Revista Mexicana de Biodiversidad, 91(e913326), 1—13. https://doi.org/10.22201/ib.20078706e.2020.91.3326

Pix4D, S. A. (2017). Pix4Dmapper 4.1 user manual. Pix4D S.A. https://support.pix4d.com/hc/en-us/articles/204272989-Offline-Getting-Started-and-Manual-pdf-

Quantum GIS Development Team. (2021). QGIS Geographic Information System (v. 3.10.14-A). República Checa: Open Source Geospatial Foundation Project. http://www.qgis.org

R Development Core Team. (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

Ramírez-Santiago, R., Ángeles-Pérez, G., Hernández-de La Rosa, P., Cetina-Alcalá, V. M., Plascencia-Escalante, O., & Clark-Tapia, R. (2019). Efectos del aprovechamiento forestal en la estructura, diversidad y dinámica de rodales mixtos en la Sierra Juárez de Oaxaca, México. Madera y Bosques, 25(3), 1—12. https://doi.org/10.21829/myb.2019.2531818

Sánchez-Meador, A. J., Waring, K. M., & Kalies, E. L. (2015). Implications of diameter caps on multiple forest resource responses in the context of the four forests festoration initiative: Results from the forest vegetation simulator. Journal of Forestry, 113(2), 219—230. https://doi.org/10.5849/jof.14-021

Sánchez-Muñoz, J. M. (2016). Análisis de calidad cartográfica mediante el estudio de la matriz de confusión. Pensamiento Matemático, 6(2), 9—26. https://dialnet.unirioja.es/servlet/articulo?codigo=5998855

SenseFly, S. A. (2018). eMotion, a Parrot Company. www.sensefly.com.

Tang, L., & Shao, G. (2015). Drone remote sensing for forestry research and practices. Journal of Forestry Research, 26(4), 791—797. https://doi.org/10.1007/s11676-015-0088-y

Torres-Rojas, G. T.-R., Romero-Sánchez, M. E., Velasco-Bautista, E., & González-Hernández, A. (2017). Estimación de parámetros forestales en bosques de coníferas con técnicas de percepción remota. Revista Mexicana de Ciencias Forestales, 7(36), 7—24. https://doi.org/10.29298/rmcf.v7i36.56

Torres-Rojo, J. M., Carrillo Anzures, F., Acosta Mireles, M., Flores Ayala, E., & Sangerman-Jarquín, D. M. (2022). Características de los productores forestales particulares de México. Revista Mexicana de Ciencias Agrícolas, 13(5), 841—852. https://doi.org/10.29312/remexca.v13i5.3228

van Lersel, W., Straatsma, M., Addink, E., & Middelkoop, H. (2018). Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS Journal of Photogrammetry and Remote Sensing, 141, 112—123. https://doi.org/10.1016/j.isprsjprs.2018.04.011

Veneros, J., García, L., Morales, E., Gómez, V., Torres, M., & López- Morales, F. (2020). Aplicación de sensores remotos para el análisis de cobertura vegetal y cuerpos de agua. Idesia (Arica), 38(4), 99—107. https://doi.org/10.4067/S0718-34292020000400099

Xu, C. X., Lim, J. H., Jin, X. M., & Yun, H. C. (2018). Land cover mapping and availability evaluation based on drone images with multi-spectral camera. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 36(6), 589—599. https://doi.org/10.7848/ksgpc.2018.36.6.589

Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7), 799—811. https://doi.org/10.14358/PERS.72.7.799

Zhao, F., Wu, X., & Wang, S. (2020). Object-oriented vegetation classification method based on UAV and satellite image fusion. Procedia Computer Science, 174, 609—615. https://doi.org/10.1016/j.procs.2020.06.132

Zhong, Y., He, J., & Chalise, P. (2020). Nested and repeated cross validation for classification model with high-dimensional data. Revista Colombiana de Estadística, 43(1), 103—125. https://doi.org/10.15446/rce.v43n1.80000

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente