Revista Chapingo Serie Ciencias Forestales y del Ambiente
Germinación y ruptura de latencia en semillas de Daphne giraldii Nitsche (Thymelaeaceae) provenientes del noroeste de China
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
ePUB

Palabras clave

Estratificación
ácido giberélico
6-benciladenina
siembra de semilla
capacidad de germinación

Cómo citar

Fang, Y. ., Enhe, Z. ., Qinli, W. ., & Zhuhong, M. . (2015). Germinación y ruptura de latencia en semillas de Daphne giraldii Nitsche (Thymelaeaceae) provenientes del noroeste de China. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 22(1), 99–113. https://doi.org/10.5154/r.rchscfa.2015.04.015

Resumen

Daphne giraldii Nitsche (Thymelaeaceae) es un arbusto de hoja perenne utilizado ampliamente como planta ornamental y en la industria farmacéutica de China. La planta exhibe latencia que retrasa y reduce la germinación. Este estudio determinó los efectos del tratamiento químico, la estratificación y el tratamiento de siembra de semillas para interrumpir la latencia de D. giraldii. Los resultados mostraron que el pretratamiento químico fue el menos eficaz. El mejor porcentaje de germinación (GP) fue 52.33 % y solamente se observó una tasa de germinación (GR) de 1.19 después de 70 días de la estratificación de semillas a una temperatura de 5 °C. Esto indica que el comportamiento de la germinación de D. giraldii no se vio afectado significativamente por la estratificación. La latencia fisiológica de semillas de D. giraldii se mitigó durante la siembra de semillas. Las semillas enterradas a 100 cm de profundidad por 170 días germinaron exitosamente con 86.5 % e índice de germinación de 10.11, por lo que fue el tratamiento más eficaz para mitigar la latencia de las semillas. Esta información puede ser útil para restaurar y conservar otros arbustos que crecen en el noroeste de China y dilucidar su supervivencia en condiciones extremas similares.

 
https://doi.org/10.5154/r.rchscfa.2015.04.015
PDF
ePUB

Citas

Airi, S., Bhatt, I. D., Bhatt, A., Rawal, R. S., & Dhar, U. (2009). Variations in seed germination of Hippophae salicifolia with different presoaking treatments. Journal of Forest Research, 20, 27–30. doi: https://doi.org/10.1007/s11676-009-0005-3

Azad, M. S., Rahman, M. T., & Matin, M. A. (2011). Seed germination techniques of Phoenix dactylifera: A new experience from Bangladesh. Frontiers of Agriculture in China, 5, 241–246. doi: https://doi.org/10.1007/s11703-011-1086-2

Baker, K. S., Steadman, K. J., Plummer, J. A., & Dixon, K. W. (2005). Seed dormancy and germination responses of nine Australian fire ephemerals. Plant and Soil, 277, 345–348. doi: https://doi.org/10.1007/S11104-005-7971-9

Baskin, C. C., & Baskin, J. M. (2004). A classification system for seed dormancy. Seed Science Research, 14, 1–16. doi: https://doi.org/10.1079/SSR2003150

Baskin, C. C., & Baskin, J. M. (2001). Seeds: Ecology, biogeography, and evolution of dormancy and germination. Plant Ecology, 152, 204–205. doi: https://doi.org/10.1023/A:1011465920842

Chen, S. Y., Kuo, S. R., & Chien, C. T. (2008). Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Tree Physiology, 28, 1431–1439. http://treephys.oxfordjournals.org/content/28/9/1431.full.pdf

Chisha, K. E., Woodward, S., & Price, A. (2007). Comparison of the effect of mechanical scarification and gibberellic acid treatments on seed germination in Pterocarpus angolensis. Southern Hemisphere Forestry Journal, 69, 63– 70. doi: https://doi.org/10.2989/SHFJ.2007.69.1.9.171

Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11,1–42. http://www.jstor.org/stable/3001478

Farshad, D., Hojat, G. M., & Mahmood E. A. (2012). Overcoming seed dormancy of mooseer (Allium hirtifolium) through cold stratification, gibberellic acid, and acid scarificati. Journal of Forestry Research, 23(4), 707–710. doi: https://doi.org/10.1007/s11676-012-0314-9

Geissler, K., & Gzik, A. (2010). Germination ecology of three endangered river corridor plants in relation to their preferred occurrence. Flora, 205(9), 590–598. doi: https://doi.org/10.1016/j.flora.2010.04.008

Gerhard, L.G. (2005). 3-Glucanase gene expression in low hydrated seeds as a mechanisms for dormancy release during tobacco after-ripening. The Plant Journal, 41, 133–145. doi: https://doi.org/10.1111/j.1365-313X.2004.02284.x

Gusano, M. G., Gomez, P. M., & Dicenta, F. (2004). Breaking seed dormancy in almond (Prunus dulcis Mill.) D. A. Webb. Scientia Horticulturae, 99, 363–370. doi: https://doi.org/10.1016/j.scienta.2003.07.001

Kermode, A. R. (2005). Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation, 24, 319–344. doi: https://doi.org/10.1007/s00344-005-0110-2

Kucera, B., Cohn, M. A., & Leubner, M. G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15, 281–307. doi: https://doi.org/10.1079/SSR2005218

Li, S. H., Wu, L. J., & Yin, H. Y. (2002). Chemical and pharmacological advances of the study on Zushim. Chinese Journal of Traditional Chinese Medicine, 27(6), 401–402.

Li, F. X., Qi, S. Z., Zhao, F. H., & Zhang, Y. D.(1999). Soil basic classification of Linze like area in Hexi Corridor. Chinese Journal of Soil Science, 30, 13–17. http://www.cnki.com.cn/Article/CJFDTotal-TRTB1999S1003.htm

Liu, H. L., Zhang, L. W., Yin, L. K., & Zhang, D. Y. (2013). Effects of temperature, dry storage, and burial on dormancy and germination of seeds of 13 desert plant species from sand dunes in the Gurbantunggut Desert, Northwest China. Arid Land Research and Management, 27, 65–78. doi: https://doi.org/10.1080/15324982.2012.719569

Li, H. Y., Gao, Z. R., Wang, S., & Wang, H. Y. (2013). Extreme temperature variation of Hexi Corridor in recent 60 years. Arid Land Geography, 38, 1–5. doi: https://doi.org/10.13826/j.cnki.cn65-1103/x.2013.01.001

Malik, N., & Vanden, B. W. H. (1988). The biology of Canadian weeds Galium aparine L. and Galium spurium L. Canadian Journal of Plant Science, 68, 481–499. doi: https://doi.org/10.4141/cjps88-059

Mark, K. J., Tony, D. A., & Andrew, J. D. (2012). Projected soil temperature increase and seed dormancy response along an altitudinal gradient: Implications for seed bank persistence under climate change. Plant and Soil, 353, 289–303. doi: https://doi.org/10.1007/s11104-011-1032-3

Merritt, D. J., Turne, S. R., Clarke, S., & Dixon, K. W. (2007). Seed dormancy and germination stimulation syndromes for Australian temperate species. Australian Journal of Botany, 55, 336–344. doi: https://doi.org/10.1071/BT06106

Mennan, H. (2003). The effects of depth and duration of burial on seasonal germination, dormancyand viability of Galium aparine and Bifora radians seeds. Journal of Agronomy and Crop Science, 189(5), 304–309. doi: https://doi.org/10.1046/j.1439-037X.2003.00048.x

Nadjafi, F., Bannayan, M., Tabrizi, L., & Rastgoo, M. (2006). Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. Journal of Arid Environments, 64, 542–547. doi: https://doi.org/10.1016/j.jaridenv.2005.06.009

Nikolaeva, M. G. (1977). Factors controlling the seed dormancy pattern. In A. A. Khan (Ed.), The physiology and biochemistry of seed dormancy and germination (pp. 51-74). USA: Elsevier/North-Holland.

Olmez, Z., Gokturk, A., & Temel, F. (2007). Effect of cold stratification, sulfuric acid, submersion in hot and top water pretreatment on germination of blad-der-senna (Colutea armena Boiss. & Huet.) seeds. Seed Science and Technology, 35, 266–271. doi: https://doi.org/10.15258/sst.2007.35.2.02

Ooim, K. J., Auld, T. D., & Whelan, R. J. (2006). Dormancy and the fire-centric focus: Germination of three Leucopogon species (Ericaceae) from south-eastern Australia. Annals of Botany, 98, 421–430. doi: https://doi.org/10.1093/aob/mcl118

OriginLab Corporation. (2007). Origin 8.0 software. Northampton, MA, USA: Author.

Packa, D., Kwiatkowski, L., & Graban, W. (2014). Germination and dormancy of sida hermaphrodita seeds. Seed science and technology, 42,1–15. doi: https://doi.org/10.15258/sst.2014.42.1.01

Packa, D., Kwiatkowski, L., & Graban, W. (2014). Germination and dormancy of sida hermaphrodita seeds. Seed science and technology, 42,1–15. doi: https://doi.org/10.15258/sst.2014.42.1.01

Poinar, G. O., & Columbus, J. T. (1992). The induction of secondary seed dormancy by oxygen deficiency in a barnyard grass Echinochloa crus-galli. Experientia, 48, 904–906. doi: https://doi.org/10.1007/BF02118432

Sechenbater, M. L., & Am, L. (2002). Effect of plant hormones on seed germination of Prunusm ongolica Maxim. Journal of Inner Mongolia Normal University (Nature Science), 31, 384–387. doi: https://doi.org/10.3969/j.issn.1001-8735.2002.04.017

Siddiqui, Z., Mujib, A., & Maqsood, M. (2011). Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Organ Cult, 104, 247–256. doi: https://doi.org/10.1007/s11240-010-9828-z

Statistical Package for the Social Sciences (SPSS). (2000). SPSS 10.0 software. Chicago, IL, USA: Author.

Tang, H., Wei, J. Q., Yang, Q. H., Liang, H. L., & Wei, X. (2012). Germination and dormancy-breaking of Diren (Melastoma dodecandrum) seeds. Seed Science and Technology, 40, 1–10. doi: https://doi.org/10.15258/sst.2012.40.1.01

Travlos, I. S., Economou, G., & Karamanos, A. I. (2007). Germination and emergence of the hard seed coated Tylosema esculentum (Burch) A. Schreib in response to different pre-sowing seed treatments. Journal of Arid Environments, 68, 501–507. doi: https://doi.org/10.1016/j.jaridenv.2006.07.001

Wang, Q. L., Yan, F., & Mao, Z. H. (2012). Studies on dormancy of Daphne giraldii Nitsche (Thymelaeaceae) seeds. Chinese Horticulture Abstracts, 12, 9–13. http://www.cnki.com.cn/Article/CJFDTOTAL-YUWZ201212008.htm

Walker, M. G. (1971). Changes in germination promotion and inhibition in seed extracts of sub-terranean clover (Trifolium subterraneum L.) related to dormancy and germination. Australian Journal of Biology Science, 24, 897–903. doi: https://doi.org/10.1071/BI9710897

Walck, J. L., & Hidayati, S. N. (2004). Germination ecophysiology of the western North American species Osmorhiza depauperata (Apiaceae): Implications of preadaptation and phylogenetic niche conservatism in seed dormancy evolution. Seed Science Research, 14, 387–394. doi: https://doi.org/10.1079/SSR2004184

Walck, J. L., Hidayati, S. N., & Okagami, N. (2002). Seed germination ecophysiology of the Asian species Osmorhiza aristata (Apiaceae): Comparison with its North American congeners and implications for evolution of types of dormancy. American Journal of Botany, 89, 829–835. doi: https://doi.org/10.3732/ajb.89.5.829

Wolfgang, S., & Gerhard, R. (2003). Variation in seed dormancy of the wetland sedge, Carex elongata, between populations and individuals in two consecutive years. Seed Science Research, 13, 315–322. doi: https://doi.org/10.1079/SSR2003148

Xing, F., Guo, J. X., & Wang, Y. H. (2003). Seed germination characteristics and regeneration mechanism of Stellera chamaejasme population. Chinese Journal of Applied Ecology, 14, 1851–1854. doi: https://doi.org/10.13287/j.1001-9332.2003.0409

Yan, Q. L., Liu, Z. M., Li, X. H., & Ma, J. L. (2007). Effects of burial on seed germination characteristics of 65 plant species on Horqin semi-arid steppe. Chinese Journal of Applied Ecology, 18, 777–782. doi: https://doi.org/10.13287/j.1001-9332.2007.0131

Yang, Q. H., Ye, W. H., Wang, Z. M., & Yin, X. J. (2009). Seed germination physiology of Ardisia crenata var. bicolor. Seed Science and Technology, 37, 291–302. doi: https://doi.org/10.15258/sst.2009.37.2.04

Zhao, R. N. (2007). Resources of Chinese traditional and herbal drugs in Gansu. Lanzhou, China: Gansu Science and Technology Press.

Zhao, J., Jin, X. J., & Zhang, H. J. (2012). Research progress of Daphne giraldii. Chinese Wild Plant Resources, 31, 12–14. doi: https://doi.org/10.3969/j.issn.1006-9690.2012.06.003

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2016 Revista Chapingo Serie Ciencias Forestales y del Ambiente