Revista Chapingo Serie Ciencias Forestales y del Ambiente
TAXOIDES: METABOLITOS SECUNDARIOS DEL ÁRBOL DEL TEJO (Taxus spp.)
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Taxol
biosíntesis
cáncer
cultivo in vitro

Cómo citar

Barrales-Cureño, H. J. ., & Soto-Hernández, R. M. . (2012). TAXOIDES: METABOLITOS SECUNDARIOS DEL ÁRBOL DEL TEJO (Taxus spp.). Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 18(2), 207–218. https://doi.org/10.5154/r.rchscfa.2011.02.017

Resumen

El árbol del tejo (Taxus spp.) es una gimnosperma dicotiledónea que pertenece a la familia Taxaceae; se distribuye en America, Europa y Asia. Taxus spp. contiene en la corteza y en las hojas, alcaloides diterpénicos conocidos como taxoides. Éstos se caracterizan químicamente por la presencia de un esqueleto de taxano y un anillo de oxetano, tal como el taxol, que es utilizado en el tratamiento del cáncer de ovario, seno, próstata y pulmón; enfermedad que actualmente es una de las principales causas de muerte a nivel mundial. El contenido de taxol es bajo en los árboles, por tanto, es necesario el uso de alternativas biotecnológicas como lo es el cultivo in vitro de tejidos vegetales para incrementar la cantidad de taxoides y preservar el recurso natural. En esta revisión científica se reportan las características químicas de los taxoides, el mecanismo de acción biológico y semisíntesis orgánica del taxol, se detalla también la ruta biosintética de los principales taxoides, así como las principales enzimas involucradas para la obtención de éstos a nivel bioquímico y, finalmente, se indica de manera general la producción de taxoides en cultivos in vitro.

https://doi.org/10.5154/r.rchscfa.2011.02.017
PDF

Citas

Agrawal, S., Banerjee, S., Chattopadhyay, S. K., Kulshreshtha, M., Musudanan, K. P., Mehta, V. K., & Kumar, S. (2000). Isolation of taxoids from cell suspension cultures of Taxus wallichiana. Plant Medica, 66, 1‒3. doi: https://doi.org/10.1055/s-2000-9782

Azcón, B. J., & Talón, M. (2008). Fundamentos de Fisiología Vegetal. España: McGraw-Hill.

Baloglu, E., & Kingston, D. G. I. (1999). The taxane diterpenoids. Journal of Natural Products, 62, 1448‒1472. doi: https://doi.org/10.1021/np990176i

Barrales, C. H. J., Soto, H. M., Ramos, V. A. C., Luna, P. R. G., Trejo, T. L. I., Martínez, V. M., & Ramírez, G. M. E. (2009). Inducción de callos in vitro de Taxus globosa a partir de acículas. Revista Latinoamericana de Química, Suplemento especial ISNN 0370-5943. pp. 89.

Barrales, C. H. J., Soto, H. R. M., Ramos, V. A. C., Trejo, T. L. I., Martínez, V. M., Ramírez, G. M. E., López, U. J. (2011). Extracción y cuantificación de taxoides por HPLC en hojas in situ y en callos inducidos in vitro de Taxus globosa Schlecht. Spanish Journal of Rural Development, 2, 103‒114.

Barrios, H., Zhang, Y., Sandoval, C., & Xiao, Z. (2009). Increase of taxol production in Taxus globosa Shoot callus by Chlorocholine Chloride. Open Natural Products Journal, 2, 33‒37. doi: https://doi.org/10.2174/1874848100902010033

Bentebibel, S., Moyano, E., Palazón, J., Cusidó, R. M., Bonfill, M., Eibl, R., & Pinol, M. T. (2005). Effects of inmobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnology and Bioengineering, 89, 647‒655. doi: https://doi.org/10.1002/bit.20321

Centelles, J., & Imperial, S. (2010). Paclitaxel, descubrimiento, propiedades y uso clínico. Fitoterapia, 29, 69‒75. http://es.scribd.com/doc/85020611/Paclitaxel-descubrimiento-propiedades-y-uso-clinico

Christen, A. A., Bland, J., & Gibson, D. M. (1989). Cell cultures as a means to produce taxol. Proceedings of the American Association for Cancer Research, 30, 566.

Croteau, R. B., Ketchum, R. E. B., Long, R. M., Kaspera, R., & Wildung, M. R. (2006). Taxol biosynthesis and molecular genetics. Phytochemistry Reviews, 5, 75‒97. doi: https://doi.org/10.1007/s11101-005-3748-2

Cusidó, R. M., Palazón, J., Bonfill, M., Expositó, O., Moyano, E., & Piñol M. T. (2007). Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochemical Engineering Journal, 33, 159‒167. doi: https://doi.org/10.1016/j.bej.2006.10.016

Cusidó, R. M., Palazón, J., Bonfill, M., Navia, O. A., Morales, C., & Piñol, M.T. (2002). Improved paclitaxel and baccatin III production in suspension cultures of Taxus media. Biotechnology Progress, 18, 418‒423. doi: https://doi.org/10.1021/bp0101583

Eisenreich, W., Mewnhard, B., Hylands, P. J., Zenk, M. H., & Bacher, A. (1996). Studies on the biosynthesis of taxol: The taxane carbon skeleton is not of mevalonoid origin. Proceedings of the National Academy of Sciences, 93, 6431‒6436.

Frense, D. (2007). Taxanes: Perspectives for biotechnological production. Applied Microbiology and Biotechnology, 73, 1233‒1240. doi: https://doi.org/10.1007/s00253-006-0711-0

Guo, B. H., Kai, G. Y., Jin, H. B., &. Tang, K. X. (2006). Taxol synthesis. African Journal of Biotechnology, 5(1), 15‒20.

Hefner, J., Rubenstein, S. M., Ketchum, R. E. B., Gibson, D. M., Williams, R. M., & Croteau, R. (1996). Citochrome p450-catalyzed hydroxylation of taxa-4(5), 11(12)- dien to taxa-4(20),11(12)-dien-alpha-ol. The first oxygenation step in taxol biosynthesis. Chemistry & Biology, 3, 479. doi: https://doi.org/10.1016/S1074-5521(96)90096-4

Heinig, U., & Jennewein S. (2009). Taxol: A complex diterpenoid natural product with an evolutionarily obscure origin. African Journal of Biotechnology, 8(8), 1370‒1385. http://publica.fraunhofer.de/documents/N-96208.html

Hezari, M., Lewis, N. G., & Croteau, R. (1995). Purification and characterization of taxa-4(5), 11(12)-diene synthase from pacific yew (Taxus brevifolia) that catalyzes the first commited step of taxol biosynthesis. Archives of Biochemistry and Biophysics, 322, 437 doi: https://doi.org/10.1006/abbi.1995.1486

Hirasuna, T. J., Pestchanker, L. J., Srinivasan, V., & Shuler M. L. (1996). Taxol production in suspension cultures of Taxus baccata. Plant Cell, Tissue and Organ Culture, 44, 95‒102. doi: https://doi.org/10.1007/BF00048185

Holton, R. A., Somoza, C., Kim, H. B., Liang, F., Biediger, R. J., & Boatman, P. D. (1994). First total synthesis of taxol 1. Functionalization of the Bring. Journal of American Chemical Society, 116, 1599‒1600. doi: https://doi.org/10.1021/ja00083a066

Jaziri, M., Zhiri, A., Guo, Y., Dupont, J., Shimomura, K., Hamada, H., … Homes, J. (1996). Taxus sp. cell, tissue and organ cultures as alternative sources for taxoids production: A literatura survey. Plant Cell, Tissue and Organ Culture, 46, 59‒75. doi: https://doi.org/10.1007/BF00039697

Jennewein, S., Rithner, C. H. D., Williams, R. M., & Croteau, R. (2003). Taxol metabolism: Ta x o i d 14β-hydroxylase is a Citochrome p450-dependent monooxygenase. Archives of Biochemistry and Biophysics, 413, 262‒270. doi: https://doi.org/10.1016/S0003-9861(03)00090-0

Jennewein, S., Rithner, CH. D., Williams, R. M., & Croteau, R. B. (2001) Taxol biosynthesis: Ta x a n e 13α-hidroxilase is a Citochrome P450-dependent monooxygenase. Proceedings of the National Academy of Sciences, 98, 13595‒13600. doi: https://doi.org/10.1073/pnas.251539398

Ketchum, R. E. B., Tandon, M., Gibson, D. M., Begley, T., & Shuler, M. L. (1999). Isolation of labeled 9-Dihydrobaccatin III and related taxoids from cell cultures of Taxus canadensis elicited with methyl jasmonate. Journal of Natural Products, 62, 1395‒1398. doi: https://doi.org/10.1021/np990201k

Khosroushahi, A. Y., Valizadeh, M., Ghasempour, A., Khosrowshahli, M., Kim, B. J., Gibson, D. M., & Shuler, M. L. (2006). Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biology International, 30, 262–269. doi: https://doi.org/10.1016/j.cellbi.2005.11.004

Kim, B. J., Gibson, D. M., & Shuler, M. L. (2006). Effect of the plant peptide regulator, phytosulfokine-alpha, on the growth and taxol production from Taxus sp. suspension cultures. Biotechnology and Bioengineering, 95, 8‒14. doi: https://doi.org/10.1002/bit.20934

Kim, S. I., Choi, H. K., Kim, J. H., Lee, H. S., & Hong, S. S. (2001). Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme and Microbial Technology, 28, 202‒209. doi: https://doi.org/10.1016/S0141-0229(00)00292-1

Liao, Z., Chen, M., Sun, X., & Tang, K. (2006). Micropropagation of endangered plant species. Methods Molecular Biology, 318, 179‒185. doi: https://doi.org/10.1385/1-59259-959-1:179

Mirjalili, N., & Linden, J. C. (1996). Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: Ethylene interaction and induction models. Biotechnology Progress, 12, 110‒118. doi: https://doi.org/10.1021/bp9500831

Mulabagal, V., & Tsay, H. S. (2004). Plant Cell Cultures-an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2, 29‒48. http://celleng.sjtu.edu.cn/yaadmin/webEditor/UploadFile/200951010138710.pdf

Murashige, T., & Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473‒497 doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Navia-Osorio, A., Garden, H., Cusido, R. M., Palazon, J., Alfermann, A. W., & Piñol, M. T. (2002). Taxol and baccatin III production in suspension cultures of Taxus baccata and Taxus wallichiana in an airlift bioreactor. Journal of Plant Physiology, 159, 97‒102. doi: https://doi.org/10.1078/0176-1617-00576

Nguyen, T., Eshraghi, J., Gonyea, G., Ream, R., & Smith, R. (2001). Studies on factors influencing stability and recovery of paclitaxel from suspension media and cultures of Taxus uspidate cv Densiformis by High-performance liquid chromatography. Journal of Chromatography A, 911, 55‒61. doi: https://doi.org/10.1016/S0021-9673(00)01272-3

Nicolaou, K. C., Yang, Z., & Liu, J. J. (1994). Total synthesis of taxol. Nature, 367, 630‒634. doi: https://doi.org/10.1038/367630a0

Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics 2002. CA: A Cancer Journal for Clinicians, 55, 74‒108. http://www.ncbi.nlm.nih.gov/pubmed/15761078

Schoendorf, A., Rithner, C. H. D., Williams, R., & Croteau, R. B. (2000). Molecular cloning of a Citochrome p450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proceedings of the National Academy of Sciences. 98, 1501‒1506. doi: https://doi.org/10.1073/pnas.98.4.1501

Son, S. H., Choi, S. M., Lee, Y. H., Choi, K. B., Yun, S. R., Kim, J. K.,… Park, Y. G. (2000). Large-scale growth and taxane production in cell cultures of Taxus cuspidate (Japanese yew) using a novel bioreactor. Plant Cell Reports, 19, 628‒633. doi: https://doi.org/10.1007/s002990050784

Soto, M., Sanjurjo, M., González, M., Cruz, D., & Giral, F. (2000). El tejo mexicano (Taxus globosa Sch.). Potencial de su aprovechamiento en taxol. Ciencia Ergo Sum, 7, 277‒279.

Tabata, H. (2006). Production of paclitaxel and the related Taxanes by cell suspension cultures of Taxus species. Current Drug Targets, 7, 453‒461. doi: https://doi.org/10.2174/138945006776359368

Vander, V. D. G., George, G. I., Gollapudi, S. R., Jampani, H. B., Liang, X. Z., Mitscher, L. A., & Ye, Q. M. (1994). Wallifoliol, a taxol congener with a novel carbon skeleton, from Himalayan Taxus wallichiana. Journal of Natural Products, 57(6), 862‒867. doi: https://doi.org/10.1021/np50108a032

Vongpaseuth, K., & Roberts, S. C. (2007). Advancements in the understanding of paclitaxel metabolism in tissue culture. Current Pharmaceutical Biotechnology, 8, 219‒236. doi: https://doi.org/10.2174/138920107781387393

Walker, K., & Croteau R. (2001). Taxol biosynthetic genes. Phytochemistry, 58, 1‒7. doi: https://doi.org/10.1016/S0031-9422(01)00160-1

Walker, K., Long, R., & Croteau, R. (2002). The final acylation step in taxol biosynthesis: Cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proceedings of the National Academy of Sciences, 99, 9166‒9171. doi: https://doi.org/10.1073/pnas.082115799

Walker, K., Klettke, K., Akiyama, T., & Croteau, R. B. (2004). Cloning, heterologous expression, and characterization 218 of a phenylalanine aminomutase involved in taxol biosynthesis. The Journal of Biological Chemistry, 279, 53947‒53954. doi: https://doi.org/10.1074/jbc.M411215200

Wang, C., Wu, J., & Mei, X. (2001). Enhancement of taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Applied Microbiology and Biotechnology, 55, 404‒410. doi: https://doi.org/10.1007/s002530000567

Wani, M. C., Taylor, H. L., & Wall, M. E. (1971). Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 2325‒2327. doi: https://doi.org/10.1021/ja00738a045

Wheeler, A. L., Long, R. M., Ketchum, R. E., Rithner, C. D., Williams, R. M., & Croteau, R. (2001). Taxol biosynthesis: Differential transformations of taxadien-5α-ol and its acetate ester by Citochrome p450 hydroxylases from Taxus suspension cells. Archives of Biochemistry and Biophysics, 390, 265‒278. doi: https://doi.org/10.1006/abbi.2001.2377

Wickremesinhe, E. R. M., & Arteca, R. N. (1994). Taxus cell suspension cultures: Optimizing growth and taxol production. Journal of Plant Physiology. 144, 183‒188. doi: https://doi.org/10.1016/S0176-1617(11)80541-9

Wildung, M. R., & Croteau, R. (1996). A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. The Journal of Biological Chemistry, 271, 9201‒9204. doi: https://doi.org/10.1074/jbc.271.16.9201

Zavala, C. F., Soto, H. M., & Rodríguez, M. T. (2001). El romerillo (Taxus globosa Schlecht.): Biología, dificultades y perspectivas de uso. Revista Chapingo Serie Horticultura, 7(1), 77‒94. http://www.chapingo.mx/revistas/horticultura/contenido.php?id_articulo=249?id_revistas=1?id_revista_numero=14

Zhang, B., Maiti, A., Shively, S., Lakhani, F., McDonald, J. G., & Bruce, J. (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proceedings of the National Academy of Sciences, 102(1), 227‒231. doi: https://doi.org/10.1073/pnas.0406361102

Zhang, C. H., Wu, J. Y., & He, G. Y. (2002). Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Applied Microbiology and Biotechnology, 60, 396‒402. doi: https://doi.org/10.1007/s00253-002-1130-5

Zhong, J. J. (2002). Plant cell culture for production of paclitaxel and other taxanes. Journal of Bioscience and Bioengineering, 94, 591‒599 doi: https://doi.org/10.1016/S1389-1723(02)80200-6

Zulak, K. G., & Bohlmann, J. (2010). Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology, 52(1), 86‒97. doi: https://doi.org/10.1111/j.1744-7909.2010.00910.x

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2012 Revista Chapingo Serie Ciencias Forestales y del Ambiente