Revista Chapingo Serie Ciencias Forestales y del Ambiente
Grafting propagation of Quercus affinis Scheidw. individuals tolerant to Andricus quercuslaurinus Melika & Pujade-Villar
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Keywords

avispa agalladora
encino
fenotipo tolerante
plaga forestal
Quercus rugosa

How to Cite

Argüello-Hernández, M., Cibrián-Llanderal, V. D., López-Upton, J., Villegas-Monter, Ángel, Pérez-Luna, A., & Castro-Garibay, S. L. (2024). Grafting propagation of Quercus affinis Scheidw. individuals tolerant to Andricus quercuslaurinus Melika & Pujade-Villar. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(2), 1–13. https://doi.org/10.5154/r.rchscfa.2023.06.039

##article.graphical##

Abstract

Introduction: The gall wasp Andricus quercuslaurinus Melika & Pujade-Villar causes the death of  Quercus affinis Scheidw. in Acaxochitlán, Hidalgo. The genetic capacity of parents with tolerance to the pest can be conserved by grafting.

Objectives: The aim of this  study is to establish  the conditions for grafting  of Quercus affinis individuals tolerant to A. quercuslaurinus attack.

Materials and methods: Scions of five tolerant and five susceptible phenotypes were collected. Homografts (Q. affinis scions on Q. affinis rootstocks) and heterografts (Q. affinis on Q. rugosa Née) were made with terminal fissure and side-veneer graft. Tests were carried out on five dates and with materials of different ages. Grafting success was evaluated with ANOVA and Tukey's test (P = 0.05). Grafting was determined by fitting the Weibull accelerated failure time model.

Results and discussion: Statistical differences (P ≤ 0.05) were found in grafting by phenotype effect. Grafting success rate with scions from tolerant trees was 166 % higher than with scions from susceptible trees. The highest grafting was obtained in homografts (90 %) with scions from young tolerant trees (12 years old) and heterografts (88 %) with scions from adult tolerant trees (35 and 40 years old).

Conclusions: The propagation of Q. affinis individuals tolerant to A. quercuslaurinus attack is possible by homografts (young trees) and heterografts (adult trees) with Q. rugosa rootstocks, preferably in early autumn.

https://doi.org/10.5154/r.rchscfa.2023.06.039
PDF
Graphical abstract
Resumen gráfico

References

Alfenas, A. C., Valverde-Zauza, A. A., Goncalves-Mafia, R., & Francisco- de Assis, T. (2009). Clonagem e doencas do eucalipto (2a ed.). Editora UFV.

Alfonso-Corrado, C., Esteban-Jiménez, R., Clark-Tapia, R., Piñero, D., Campos, J. E., & Mendoza, A. (2004). Clonal and genetic structure of two Mexican oaks: Quercus eduardii and Quercus potosina (Fagaceae). Evolutionary Ecology, 18(5–6), 585–599. https://doi.org/10.1007/s10682-004-5145

Almqvist, C. (2013). Interstock effects on topgraft vitality and strobili production after topgrafting in Pinus sylvestris. Canadian Journal of Forest Research, 43(6), 584–588. https://doi.org/10.1139/cjfr-2012-0507

Barrera-Ramírez, R., Vargas-Hernández, J. J., López-Aguillón, R., Muñoz-Flores, H. J., Treviño-Garza, E. J., & Aguirre-Calderón, O. A. (2020). Impact of external and internal factors on successful grafting of Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(2), 243–256. https://doi.org/10.5154/r.rchscfa.2020.05.037

Barrera-Ruiz, U. M., Cibrián-Tovar, D., Llanderal-Cázares, M. C. M., Cibrián-Llanderal, V. D., & Lagunes-Tejeda, A. (2016). Chemical combat of gall wasps Andricus quercuslaurinus Melika

& Pujade-Villar (Cynipidae) in Quercus affinis Scheidw. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(2), 115–123. https://doi.org/10.5154/r.rchscfa.2015.05.020

Cabrera-Ramírez, R., Jiménez-Casas, M., López-López, M. Á., & Parra- Piedra, J. P. (2022). Manejo nutrimental de árboles de pino híbrido y uso de ácido indolbutírico para su clonación por estacas. Revista Mexicana de Ciencias Forestales, 13(69), 132–54. https://doi.org/10.29298/rmcf. v13i69.1070

Castro-Garibay, S. L., Villegas-Monter, A., & López-Upton, J. (2017). Anatomy of rootstocks and scions in four pine species. Forest Research: Open Access, 6(3), 1–6. https://doi.org/10.4172/2168-9776.1000211

Castro-Garibay, S. L., Villegas-Monter, Á., López-Upton, J., Sandoval- Villa, M., & Arévalo-Galarza, L. (2022). Effective protocol to increase the percentage of grafting success of Pinus greggii Engelm. var. australis Donahue et López. Revista Chapingo Serie Ciencias Forestales, 28(2), 225–240. https://doi.org/10.5154/r. rchscfa.2021.03.014

Crecente Campo, S., & Fernández Lorenzo, J. L. (2008). Injerto en serie acelerado de Quercus robur adulto. Cuaderno Sociedad de Ciencias Forestales, 24, 45–50. https://doi.org/10.31167/csef.v0i24.9640

Day, M. E., & Greenwood, M. S. (2011). Regulation of ontogeny in temperate conifers. In F. C. Meinzer, T. Dawson, & B. Lachenbruch (Eds.), Size- and age-related changes in tree structure and function (pp. 91–232). Springer Dordrecht. https://doi. org/10.1007/978-94-007-1242-3_4

Ghorbani, N., Yazdani-Charati, J., Anvari, K., & Ghorbani, N. (2016). Application of the Weibull accelerated failure time model in the determination of disease-free survival rate of patients with breast cancer. Iranian Journal of Health Sciences, 4(2), 11–18. https://doi.org/10.18869/acadpub.jhs.4.2.11

Goldschmidt, E. E. (2014). Plant grafting: New mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 1–9. https://doi.org/10.3389/fpls.2014.00727

Gómez, B. G. R., Wendling, I., Stuepp, C. A., & Camargo Angelo, A. (2017). Rootstock age and growth habit influence top grafting in Araucaria angustifolia. CERNE, 23(4), 465–471. https://doi.org/10.1590/01047760201723042447

Hartmann, H. T., Kester, D. E. Jr., Davies, F. T., Geneve, R. L. (2014). Plant propagation principles and practices (8th ed.). Pearson Education, Inc.

Hibbert-Frey, H., Frampton, J., Blazich, F. A., & Hinesley, L. E. (2010). Grafting fraser fir (Abies fraseri): Effect of grafting date, shade, and irrigation. Hortscience, 45(4), 617–620. https://doi.org/10.21273/HORTSCI.45.4.617

Sistema Integral de Vigilancia y Control Fitosanitario Forestal (SIVICOFF). (2018). Contingencias fitosanitarias, 2018-Hidalgo- SAN3AP0818130001 Avispa Agalladora. http://sivicoff.cnf.gob.mx/frmContingenciasOperativas.aspx

Kita, K., Kon, H., Ishizuka, W., Agatho, E., & Kuromaru, M. (2018). Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): a comparison between Japanese larch (L. kaempferi) and F1hybrid larch (L. gmelinii var. japonica

× L. kaempferi) rootstocks. Silvae Genetica, 67(1), 111–116. https://doi.org/10.2478/sg-2018-0016

Kundu, P., Darpe, A. K., & Kulkarni, M. S. (2019). Weibull accelerated failure time regression model for remaining useful life prediction of bearing working under multiple operating conditions. Mechanical Systems and Signal Processing, 134, 106302. https://doi.org/10.1016/j.ymssp.2019.106302

Loewe-Muñoz, V., Balzarini, M., Delard, C., & Álvarez, A. (2019). Variability of stone pine (Pinus pinea L.) fruit traits impacting pine nut yield. Annals of Forest Science, 76(2), 1–10. https://doi.org/10.1007/s13595-019-0816-0.10

Loewe-Muñoz, V., Del Río, R., Delard, C., & Balzarini, M. (2022). Enhancing Pinus pinea cone production by grafting in a non-native habitat. New Forests, 53, 37–55. https://doi.org/10.1007/s11056-021-09842-5

Melika, G., Cibrián-Tovar, D., Cibrián-Llanderal, V. D., Tormos, J., & Pujade-Villar, J. (2009). New species of oak gall wasp from Mexico (Hymenoptera: Cynipidae: Cynipini), a serious pest of Quercus laurina (Fagaceae). Dugesiana, 16(2), 67–73. https://doi.org/10.32870/dugesiana.v16i2.3932

Pérez-Luna, A., Prieto-Ruíz, J. Á., López-Upton, J., Carrillo-Parra, A., Wehenkel, C., Chávez-Simental, J. A., & Hernández-Díaz, J. C. (2019). Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Forests, 10(2), 112. https://doi.org/10.3390/f10020112

Pérez-Luna, A., Wehenkel, C., Prieto-Ruíz, J. Á., López-Upton, J., & Hernández-Díaz, J. (2020). Survival of side grafts with scions from pure species Pinus engelmannii Carr. and the P. engelmannii × P. arizonica Engelm. var. arizonica hybrid. PeerJ, 8(6), e8468. https://doi.org/10.7717/peerj.8468

Pina, A., Errea, P., & Martens, H. J. (2012). Graft union formation and cell-to-cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. Scientia Horticulturae, 143, 144–150. https://doi.org/10.1016/j.scienta.2012.06.017

Pujade-Villar, J., Cibrián-Tovar, D., Barrera-Ruíz, U. M., & Cuesta- Porta, V. (2018). Descripción de una nueva especie de Andricus Hartig de México (Hymenoptera: Cynipidae: Cynipini). Butlletí de la Institución Catalana d´ Història Natural, 83, 29–37.

Statistical Analysis System Institute. (2013). SAS computer software v. 9.4. Cary, NC, USA.

Ullon-Chiriguaya, F. C., Cárdenas-Carrión, J. A., Valencia-Enríquez, X. P., & Martínez-Sotelo, M. C. (2022). Efecto del injerto de sandía (Citrullus lanatus) en zapallo (Cucurbita maxima), en etapa de desarrollo. Revista Científica Multidisciplinar, 3(2), 25–34. https://revista.gnerando.org/revista/index.php/RCMG/ article/view/34

Valencia-Manzo, S., Playas-Ramos, I., Cornejo-Oviedo, E. H., & Flores- López, C. (2017). Patrón de alargamiento del brote terminal en un ensayo de procedencias de Pinus greggii Engelm. en la Sierra de Arteaga, Coahuila. Madera y Bosques, 23(1), 133–141. https://doi.org/10.21829/myb.2017.2311555

Velasco-González, A. (2019). Resistencia en hospedantes de la avispa agalladora del encino Andricus quecuslaurinus & Pujade-Villar. Tesis de Maestría, División de Ciencias Forestales, Universidad Autónoma Chapingo.

Velisevich, S. N., Bender, O. G., & Goroshkevich, S. N. (2021). The influence of scion donor tree age on the growth and morphogenesis of Siberian stone pine grafts. New Forests, 52(3), 473–491. https://doi.org/10.1007/s11056-020-09805-2

Venturini, M., & López, C. (2010). Propagación de árboles selectos por injerto de púas de Eucalyptus camaldulensis Dehnh. Revista de Ciencias Forestales Quebracho, 18(1-2), 101–105. http://www.redalyc.org/articulo.oa?id=48118695010

Zaczek, J. J., Steiner, K. C., Heuser, C. W., & Tzilkowski, W. M. (2006). Effects of serial grafting, ontogeny, and genotype on rooting of Quercus rubra cuttings. Canadian Journal of Forest Research, 36(1), 123–131. https://doi.org/10.1139/x05-223

Zhang, Z. (2016). Parametric regression model for survival data: Weibull regression model as an example. Annals of Translational Medicine, 4(24), 484 https://doi.org/10.21037/atm.2016.08.45

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente