Revista Chapingo Serie Ciencias Forestales y del Ambiente
Physico-mechanical performance of an epoxy matrix biocomposite reinforced with Agave angustifolia Haw.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Keywords

agave bagasse
sodium bicarbonate
glass fiber
agroindustrial wastes
material strength

How to Cite

Colin-Torres, J. ., González-Peña, M. M. ., Hidalgo-Reyes, M. ., & Pérez-López, A. . (2024). Physico-mechanical performance of an epoxy matrix biocomposite reinforced with Agave angustifolia Haw. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(1), 1–16. https://doi.org/10.5154/r.rchscfa.2023.02.012

##article.highlights##

  • Agave fiber increased the flexural and tensile modulus of biocomposite.
  • Sodium bicarbonate increased mechanical properties of fibers and impact resistance.
  • Hybrid biocomposites (agave/glass) had better physical-mechanical performance than single-fiber biocomposites.
  • The use of agave fibers in biocomposites is an option for agroindustrial waste management.

##article.graphical##

Abstract

Introduction: Biocomposites reinforced with natural fibers are important for the use of biodegradable and renewable waste.
Objective: The aim of this study was to evaluate the physical-mechanical performance of a laminar biocomposite developed with a low viscosity epoxy polymer matrix, reinforced with Agave angustifolia Haw. bagasse fibers.
Materials and methods: Twelve panels were prepared combining three fiber contents (18 %, 24 % and 30 %) with four lengths (1 mm, 3 mm, 6 mm and mixed). Mechanical tests were performed, and the results were compared with the control (pure resin). Three chemical treatments (sodium bicarbonate, vinyl triethoxy silane and sodium hydroxide) and their effect on physico-mechanical properties were evaluated at the fibermatrix interface; in addition, hybridization with glass fiber was evaluated.
Results and discussion: Adding fiber reduced the ultimate tensile and flexural strength of the biocomposite by 15.27 %; however, the tensile and flexural moduli increased by up to 1/3 compared to the control. The best chemical treatment (sodium bicarbonate) increased the mechanical properties of the fibers (hardness [46 %] and tensile strength [6 %] and flexural strength [24 %]) and impact strength (38 %), while density and moisture resistance decreased 17 % and 11 %, respectively. The agave/glass fiber combination increased flexural strength up to 77.3 %.
Conclusions: A. angustifolia fibers have potential to be used in industry, because they improve the mechanical properties of the material; in addition, their use would represent an alternative for managing waste residues.

https://doi.org/10.5154/r.rchscfa.2023.02.012
PDF
Graphical abstract
Resumen gráfico

References

Aguirre, D. X., & Eguiarte, L. E. (2013). Genetic diversity, conservation and sustainable use of wild Agave cupreata and Agave potatorum extracted for mezcal production in Mexico. Journal of Arid Environments, 90, 36—44. https://doi.org/10.1016/j.jaridenv.2012.10.018

Alomayri, T., Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2014). Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies, 2(3), 223—230. https://doi.org/10.1016/j.jascer.2014.05.005

American Society for Testing and Materials (ASTM International). (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials (ASTM D790-17). doi.org/10.1520/D0790-17

American Society for Testing and Materials (ASTM International). (2018). Standard test method for determining the Charpy impact resistance of notched specimens of plastics (ASTM D6110-18). doi.org/10.1520/D6110-18

American Society for Testing and Materials (ASTM International). (2022). Standard test method for tensile properties of plastics (ASTM D638-22). https://doi.org/10.1520/D0638-22

American Society for Testing and Materials (ASTM International). (2022). Standard test method for water absorption of plastics (ASTM D570-22). doi.org/10.1520/D0570-98R10E01

American Society for Testing and Materials (ASTM International). (2023). Standard test method for Rockwell hardness of plastics and electrical insulating materials (ASTM D785-23). doi.org/10.1520/D0785-23

Ashik, K. P., Sharma, R. S., & Guptha, V. L. J. (2018). Investigation of moisture absorption and mechanical properties of natural / glass fiber reinforced polymer hybrid composites. Materials Today: Proceedings, 5(1), 3000—3007. https://doi.org/10.1016/j.matpr.2018.01.099

Atiqah, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., & Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8(5), 3726-3732. https://doi.org/10.1016/j.jmrt.2019.06.032

Betelie, A. A., Sinclair, A. N., Kortschot, M., Li, Y., & Redda, D. T., (2019). Mechanical properties of sisal-epoxy composites as functions of fiber-to-epoxy ratio. AIMS Materials Science, 6(6), 985–996. https://doi.org/10.3934/matersci.2019.6.985

Benkhelladi, A., Laouici, H., & Bouchoucha, A. (2020). Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibers. The International Journal of Advanced Manufacturing Technology, 108(3), 895–916. https://doi.org/10.1007/s00170-020-05427-2

Chaitanya, S., & Singh, I. (2018). Sisal fiber-reinforced green composites: Effect of ecofriendly fiber treatment. Polymer Composites, 39(12), 4310—4321. https://doi.org/10.1002/pc.24511

Cisneros, L. E. O., Pérez, F. A. A., Fuentes-Talavera, F. J., Anzaldo, J., González, N. R., Rodrigue, D., & Robledo, O. J. R. (2016). Rotomolded polyethylene-agave fiber composites: Effect of fiber surface treatment on the mechanical properties. Polymer Engineering and Science, 56(8), 856—865. https://doi.org/10.1002/pen.24314

Consejo Mexicano Regulador de la Calidad del Mezcal (COMERCAM). (2022). Informe estadístico. https://comercam-dom.org.mx/wpcontent/uploads/2022/06/INFORME-2022-_II_-SINTESIS.pdf

Cuéllar, A., & Muñoz, I. (2010). Bamboo fiber reinforcement for polymer matrix. DYNA, 77(162), 137—142. https://www.researchgate.net/publication/262438249_Bamboo_fiber_reinforcement_for_polymer_matrix

Fiore, V., Scalici, T., & Valenza, A. (2018). Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. Journal of Composite Materials, 52(8), 1061—1072. https://doi.org/10.1177/0021998317720009

Haameem, J. A. M., Abdul Majid, M. S., Afendi, M., Marzuki, H. F. A., Hilmi, E. A., Fahmi, I., & Gibson, A. G. (2016). Effects of water absorption on Napier grass fiber/polyester composites. Composite Structures, 144, 138–146. https://doi.org/10.1016/j.compstruct.2016.02.067

Hidalgo-Reyes, M., Caballero, C. M., Hernández-Gómez, L. H., & Urriolagoitia, C. G. (2015). Chemical and morphological characterization of Agave angustifolia bagasse fibers. Botanical Sciences, 93(4), 807—817. https://doi.org/10.17129/botsci.250

Jacques, H. C., Herrera Pérez, O., & Ramírez de León, J. (2007). El maguey mezcalero y la agroindustria del mezcal en Tamaulipas. In P. C. García Marín, A. Larqué Saavedra, L. E. Eguiarte, & D. Zizumbo-Villarreal (Eds.), En lo ancestral hay futuro: Del tequila, los mezcales y otros agaves (1.a ed., pp. 287–317). Centro de Investigación Científica de Yucatán.

Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fiber reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1—18. https://doi.org/10.1016/j.carbpol.2011.04.043

Koffi, A., Koffi, D., & Toubal, L. (2021). Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites. Polymer Testing, 93, 106956. https://doi.org/10.1016/j.polymertesting.2020.106956

Kwon, H. J., Sunthornvarabhas, J., Park, J. W., Lee, J. H., Kim, H. J., Piyachomkwan, K., Sriroth, K., & Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites Part B: Engineering, 56, 232—237. https://doi.org/10.1016/j.compositesb.2013.08.003

Lalit, R., Mayank, P., & Ankur, K. (2018). Natural fibers and biopolymers characterization: A future potential composite material. Strojnícky časopis - Journal of Mechanical Engineering, 68(1), 33—50. https://doi.org/10.2478/scjme-2018-0004

Luna, P., & Lizarazo-Marriaga, J. M. (2022). Fibras naturales como refuerzo en materiales compuestos de matriz polimérica. MOMENTO, (65), 65–79. https://doi.org/10.15446/mo.n65.103151

Mahfoudh, A., Cloutier, A., & Rodrigue, D. (2013). Characterization of UHMWPE/wood composites produced via dry-blending and

compression molding. Polymer Composites, 34(4), 510—516. https://doi.org/10.1002/pc.22455

Md Shah, A. U., Sultan, M. T., & Jawaid, M. (2021). Sandwichstructured bamboo powder/glass fiber-reinforced epoxy hybrid composites – Mechanical performance in static and dynamic evaluations. Journal of Sandwich Structures & Materials, 23(1), 47–64. https://doi.org/10.1177/1099636218822740

Mylsamy, K., & Rajendran, I. (2011). Influence of alkali treatment and fiber length on mechanical properties of short Agave fiber reinforced epoxy composites. Materials and Design, 32(8-9), 4629—4640. https://doi.org/10.1016/j.matdes.2011.04.029

Park, S. J., & Seo, M. K. (2011). Element and processing. In S. J. Park & M. K. Seo (Eds.), Interface science and technology (vol. 18, pp. 431–499). Elsevier. https://doi.org/10.1016/B978-0-12-375049-5.00006-2

Pérez, F. A. A., Arellano, M., Rodrigue, D., González, N. R., & Robledo, O. J. R. (2016). Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites. Polymer Composites, 37(10), 3015—3024. https://doi.org/10.1002/pc.23498

Pérez, F. A. A., Robledo, O. J. R., Ramírez-Arreola, D. E., Ortega, G. P., Rodrigue, D., & González-Núñez, R. (2014). Effect of hybridization on the physical and mechanical properties of high density polyethylene-(pine/agave) composites. Materials and Design, 64, 35—43. https://doi.org/10.1016/j.matdes.2014.07.025

Pérez Hernández, E., Chávez-Parga, M. D. C., & González Hernández, J. C. (2016). Revisión del agave y el mezcal. Revista Colombiana de Biotecnología, 18(1), 148—164. https://doi.org/10.15446/rev.colomb.biote.v18n1.49552

Robledo, O. J. R., González, L. M. E., Rodrigue, D., Gutiérrez, R. J. F., Prezas, L. F., & Pérez, F. A. A. (2020). Improving the compatibility and mechanical properties of natural fibers/green polyethylene biocomposites produced by rotational molding. Journal of Polymers and the Environment, 28(3), 1040—1049. https://doi.org/10.1007/s10924-020-01667-1

Rodríguez, C. A., & de la Cerna, H. C. (2017). The mezcal, its production and waste treatment. Alianzas y Tendencias, BUAP, 2(8), 10—14. http://doi.org/10.5281/zenodo.5083893

Salleh, Z., Yunus, S., Masdek, N. R. N. M., Taib, Y. M., Azhar, I. I. S., & Hyie, K. M. (2018). Tensile and flexural test on kenaf hybrid composites. IOP Conference Series: Materials Science and Engineering, 328(1), 012018. https://doi.org/10.1088/1757-899X/328/1/012018

Shah, I., Jing, L., Fei, Z. M., Yuan, Y. S., Farooq, M. U., & Kanjana, N. (2021). A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites. Journal of Natural Fibers, 19(13), 1—19. https://doi.org/10.1080/15440478.2021.1875359

Silva S., L., Hernández Gómez, L. H., Caballero C., M., & López Hernández, I. (2009). Tensile strength of fibers extracted from the leaves of the Agave angustifolia Haw. in function of their length. Applied Mechanics and Materials, 15, 103—108. https://doi.org/10.4028/www.scientific.net/AMM.15.103

Tanzi, M. C., Farè, S., & Candiani, G. (2019). Organization, structure, and properties of materials. In M. C. Tanzi, S. Farè, & G. Candiani (Eds.), Foundations of biomaterials engineering (pp. 3–103). Academic Press. https://doi.org/10.1016/B978-0-08-101034-1.00001-3

Thomas, S., Paul, S. A., Pothan, L. A., & Deepa, B. (2011). Natural fibers: Structure, properties and applications. In S. Kalia, B. Kaith, & I. Kaur (Eds.), Cellulose fibers: bio- and nano-polymer composites (pp. 3—42). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_1

Torres-Tello., E. V., Robledo-Ortíz, J. R., González-García, Y., PérezFonseca, A. A., Jasso-Gastinel, C. F., & Mendizábal, E. (2017). Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Industrial Crops and Products, 99, 117—125. https://doi.org/10.1016/j.indcrop.2017.01.035

Uddin, N., & Kalyankar, R. R. (2011). Manufacturing and structural feasibility of natural fiber reinforced polymeric structural insulated panels for panelized construction. International Journal of Polymer Science, Article ID 963549 https://doi.org/10.1155/2011/963549

Yan, L., Chouw, N., & Yuan, X. (2012). Improving the mechanical properties of natural fiber fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites, 31(6), 425—437. https://doi.org/10.1177/0731684412439494

Zhang, Z., Chen, S., & Zhang, J. (2013). Blends of poly(vinyl chloride) with α-methylstyrene-acrylonitrile- butadiene-styrene copolymer: Thermal properties, mechanical properties, and morphology. Journal of Vinyl and Additive Technology, 19(1), 1—10. https://doi.org/10.1002/vnl.20326

Zhou, H., Li, W., Hao, X., Zong, G., Yi, X., Xu, J., Ou, R., & Wang, Q. (2022). Recycling end-of-life WPC products into ultra-high-filled, high-performance wood fiber/polyethylene composites: A sustainable strategy for clean and cyclic processing in the WPC industry. Journal of Materials Research and Technology, 18, 1—14. https://doi.org/10.1016/j.jmrt.2022.02.091

Zhou, S., Li, J., Kang, S., Zhang, D., Han, Y., & Ma, P. (2022a). Impact properties analysis of bamboo/glass fiber hybrid composites. Journal of Natural Fibers, 19(1), 329—338. https://doi.org/10.1080/15440478.2020.1745114

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente