Revista Chapingo Serie Ciencias Forestales y del Ambiente
Maximum size-density relationship for mixed forests of Nuevo San Juan Parangaricutiro, Michoacán, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

temperate forests
potential model
exponential model
Reineke stand density index
density guide

How to Cite

Hernández-Martínez, A. J., Reyes-Hernández, V. J., de los Santos-Posadas, H. M., Velázquez-Martínez, A., & Quiñonez-Barraza, G. (2023). Maximum size-density relationship for mixed forests of Nuevo San Juan Parangaricutiro, Michoacán, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(3), 129–146. https://doi.org/10.5154/r.rchscfa.2023.02.011

##article.highlights##

  • Maximum size-density relationship (MSDR) without species ratio is linear and exponential.
  • Maximum MSDR is also dependent on the species ratio in mixed forests.
  • Size-density allometric coefficients relate species tolerance and self-tolerance.
  • Shade tolerant species showed a negative estimated slope.

Abstract

Introduction: The maximum size-density relationship (MSDR) describes the dynamics of species-mixed stands, and it is essential in the implementation of silvicultural treatments for density control.
Objective: To analyze the influence of species composition on MSDR in mixed temperate forests of Nuevo San Juan Parangaricutiro, Michoacán, Mexico.
Materials and methods: MSDR was analyzed with a potential and an exponential model under two approaches with observations of mixed species stands. The first (E1) described the MSDR trajectory without taking into account the proportion of species and the second (E2) included the proportion of species in four groups: Pinus, Quercus, other conifers and broadleaves. Both approaches were analyzed with stochastic frontier regression (SFR) and quantile regression (QR).
Results and discussion: E1 results were favorable with the use of RC, as it showed a higher trajectory of the data to define MSDR in a linear and concave manner. In E2, the allometric coefficients of the size-density relationship for the four species groups were different and RC estimated the MSDR with species proportion adequately. In shade tolerant species (other conifers and broadleaves), the estimated slope was more negative compared to intolerant species (Pinus and Quercus).
Conclusions: For mixed forests, MSDR is adequately explained when it is dependent on species composition, because it influences the behavior of the maximum density line, useful for planning density management strategies in mixed forests.

https://doi.org/10.5154/r.rchscfa.2023.02.011
PDF

References

Aguirre, A., del Río, M., & Condés, S. (2018). Intra-and inter-specific variation of the maximum size-density relationship along an aridity gradient in Iberian pinewoods. Forest Ecology and Management, 411, 90‒100. https://doi.org/10.1016/j.foreco.2018.01.017

Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21‒37. https://doi.org/10.1016/0304-4076(77)90052-5

Andrews, C., Weiskittel, A., D'Amato, A. W., & Simons-Legaard, E. (2018). Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. Forest Ecology and Management, 417, 90‒102. https://doi.org/10.1016/j.foreco.2018.02.038

Battese, G. E., & Corra, G. S. (1977). Estimation of a production frontier model: with application to the pastoral zone of Eastern Australia. Australian Journal of Agricultural Economics, 21(3), 169‒179. https://doi.org/10.1111/j.1467-8489.1977.tb00204.x

Bi, H. (2004). Stochastic frontier analysis of a classic self‐thinning experiment. Austral Ecology, 29(4), 408‒417. https://doi.org/10.1111/j.1442-9993.2004.01379.x

Cao, Q. V., Dean, T. J., & Baldwin Jr, V. C. (2000). Modeling the size–density relationship in direct-seeded slash pine stands. Forest Science, 46(3), 317‒321. https://doi.org/10.1093/forestscience/46.3.317

Condés, S., Vallet, P., Bielak, K., Bravo-Oviedo, A., Coll, L., Ducey, M. J., Pach, M., Pretzsch, H., Sterba, H., Vayreda, J., & del Río, M. (2017). Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. Forest Ecology and Management, 385, 295‒307. https://doi.org/10.1016/j.foreco.2016.10.059

Dirección Técnica Forestal. (2017). Modificación al programa de manejo forestal, nivel avanzado para el aprovechamiento de recursos forestales maderables por incorporación de superficie. Comunidad Índigena de Nuevo San Juan Parangaricutiro, Michoacán, México.

de Prado, R. D., San Martín, R., Bravo, F., & de Aza, H. C. (2020). Potential climatic influence on maximum stand carrying capacity for 15 mediterranean coniferous and broadleaf species. Forest Ecology and Management, 460, 117824. https://doi.org/10.1016/j.foreco.2019.117824

del Río, M., Bravo-Oviedo, A., Ruiz-Peinado, R., & Condés, S. (2019). Tree allometry variation in response to intra-and inter-specific competitions. Trees, 33(1), 121‒138. https://doi.org/10.1007/s00468-018-1763-3

del Río, M., Pretzsch, H., Alberdi, I., Bielak, K., Bravo, F., Brunner, A., Condés, S., Ducey, M. J., Fonseca, T., Lüpke, N., Pach, M., Peric, S., Perot, T., Souidi, Z., Spathelf, P., Sterba, H., Tijardovic, M., Tomé, M., Vallet, P., & Bravo-Oviedo, A. (2016). Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. European Journal of Forest Research, 135(1), 23‒49. https://doi.org/10.1007/s10342-015-0927-6

Ducey, M. J., & Knapp, R. A. (2010). A stand density index for complex mixed species forests in the northeastern United States. Forest Ecology and Management, 260(9), 1613‒1622. https://doi.org/10.1016/j.foreco.2010.08.014

Ducey, M. J., Woodall, C. W., & Bravo-Oviedo, A. (2017). Climate and species functional traits influence maximum live tree stocking in the Lake States, USA. Forest Ecology and Management, 386, 51‒61. https://doi.org/10.1016/j.foreco.2016.12.007

Kimsey, M. J., Shaw, T. M., & Coleman, M. D. (2019). Site sensitive maximum stand density index models for mixed conifer stands across the Inland Northwest, USA. Forest Ecology and Management, 433, 396‒404. https://doi.org/10.1016/j.foreco.2018.11.013

Koenker, R. (2019). Quantile regression in R: a vignette. https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf

Koenker, R., & Bassett Jr., G. (1978). Regression quantiles. Society Econometrica: Journal of the Econometric, 46(1), 33‒50. https://doi.org/10.2307/1913643

Long, J. N., & Daniel, T. W. (1990). Assessment of growing stock in uneven-aged stands. Western Journal of Applied Forestry, 5(3), 93‒96. https://doi.org/10.1093/wjaf/5.3.93

Meeusen, W., & van den Broeck, J. (1977). Technical efficiency and dimension of the firm: some results on the use of frontier production functions. Empirical Economics, 2(2), 109‒122. https://doi.org/10.1007/BF01767476

Ningre, F., Ottorini, J.-M., & Le Goff, N. (2016). Modeling size-density trajectories for even-aged beech (Fagus silvatica L.) stands in France. Annals of forest science, 73(3), 765‒776. https://doi.org/10.1007/s13595-016-0567-0

Pretzsch, H., & Biber, P. (2005). A re-evaluation of Reineke's rule and stand density index. Forest Science, 51(4), 304‒320. https://doi.org/10.1093/forestscience/51.4.304

Pretzsch, H., & Biber, P. (2016). Tree species mixing can increase maximum stand density. Canadian Journal of Forest Research, 46(10), 1179‒1193. https://doi.org/10.1139/cjfr-2015-0413

Quiñonez-Barraza, G., & Ramírez-Maldonado, H. (2019). Can an exponential function be applied to the asymptotic density–size relationship? Two wew stand-density indices in mixed-species forests. Forests, 10(1), 9. https://doi.org/10.3390/f10010009

Quiñonez-Barraza, G., Tamarit-Urias, J. C., Martínez-Salvador, M., García-Cuevas, X., Santos-Posadas, H. M., & Santiago-García, W. (2018). Maximum density and density management diagram for mixed-species forests in Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(1), 73‒90. https://doi.org/10.5154/r.rchscfa.2017.09.056

R Core Team. (2020). R: A language and environment for statistical computing [software]. R Foundation for Statistical Computing. https://www.R-project.org/

Reineke, L. H. (1933). Perfection a stand-density index for even-aged forest. Journal of Agricultural Research, 46, 627‒638.

Reyes-Hernández, V., Comeau, P. G., & Bokalo, M. (2013). Static and dynamic maximum size–density relationships for mixed trembling aspen and white spruce stands in western Canada. Forest Ecology and Management, 289, 300‒311. https://doi.org/10.1016/j.foreco.2012.09.042

Rivoire, M., & Moguedec, L. G. (2012). A generalized self-thinning relationship for multi-species and mixed-size forests. Annals of Forest Science, 69(2), 207‒219. https://doi.org/10.1007/s13595-011-0158-z

Salas‐Eljatib, C., & Weiskittel, A. R. (2018). Evaluation of modeling strategies for assessing self‐thinning behavior and carrying capacity. Ecology and Evolution, 8(22), 10768-10779. https://doi.org/10.1002/ece3.4525

Schütz, J.-P., & Zingg, A. (2010). Improving estimations of maximal stand density by combining Reineke’s size-density rule and the yield level, using the example of spruce (Picea abies (L.) Karst.) and European Beech (Fagus sylvatica L.). Annals of Forest Science, 67(5), 507. https://doi.org/10.1051/forest/2010009

Solomon, D. S., & Zhang, L. (2002). Maximum size–density relationships for mixed softwoods in the northeastern USA. Forest Ecology and Management, 155(1), 163‒170. https://doi.org/10.1016/S0378-1127(01)00556-4

Sterba, H., & Monserud, R. A. (1993). The maximum density concept applied to uneven-aged mixed-species stands. Forest Science, 39(3), 432‒452. https://doi.org/10.1093/forestscience/39.3.432

Tang, X., Pérez-Cruzado, C., Vor, T., Fehrmann, L., Álvarez-González, J. G., & Kleinn, C. (2016). Development of stand density management diagrams for Chinese fir plantations. Forestry: An International Journal of Forest Research, 89(1), 36‒45. https://doi.org/10.1093/forestry/cpv024

Tian, D., Bi, H., Jin, X., & Li, F. (2021). Stochastic frontiers or regression quantiles for estimating the self-thinning surface in higher dimensions? Journal of Forestry Research, 32(4), 1515‒1533. https://doi.org/10.1007/s11676-020-01196-6

Torres-Rojo, J. M., & Velázquez-Martínez, A. (2000). Indice de densidad relativa para rodales coetáneos mezclados. Agrociencias, 34(4), 497‒507. https://agrociencia-colpos.mx/index.php/agrociencia/article/view/54

VanderSchaaf, C. L. (2010). Estimating individual stand size–density trajectories and a maximum size–density relationship species boundary line slope. Forest Science, 56(4), 327‒335. https://doi.org/10.1093/forestscience/56.4.327

VanderSchaaf, C. L., & Burkhart, H. E. (2007). Comparison of methods to estimate Reineke's maximum size-density relationship species boundary line slope. Forest Science, 53(3), 435‒442. https://doi.org/10.1093/forestscience/53.3.435

VanderSchaaf, C. L., & Burkhart, H. E. (2008). Using segmented regression to estimate stages and phases of stand development. Forest Science, 54(2), 167‒175. https://doi.org/10.1093/forestscience/54.2.167

VanderSchaaf, C. L., & Burkhart, H. E. (2012). Development of planting density–specific density management diagrams for loblolly pine. Southern Journal of Applied Forestry, 36(3), 126‒129. https://doi.org/10.5849/sjaf.10-043

Weiskittel, A., Gould, P., & Temesgen, H. (2009). Sources of variation in the self-thinning boundary line for three species with varying levels of shade tolerance. Forest Science, 55(1), 84‒93. https://doi.org/10.1093/forestscience/55.1.84

Woodall, C. W., Miles, P. D., & Vissage, J. S. (2005). Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. Forest Ecology and Management, 216(1), 367‒377. https://doi.org/10.1016/j.foreco.2005.05.050

Zeide, B. (1985). Tolerance and self-tolerance of trees. Forest Ecology and Management, 13(3-4), 149‒166. https://doi.org/10.1016/0378-1127(85)90031-3

Zeide, B. (1995). A relationship between size of trees and their number. Forest Ecology and Management, 72(2-3), 265‒272. https://doi.org/10.1016/0378-1127(94)03453-4

Zeide, B. (2005). How to measure stand density. Trees, 19(1), 1‒14. https://doi.org/10.1007/s00468-004-0343-x

Zeide, B. (2010). Comparison of self-thinning models: an exercise in reasoning. Trees, 24(6), 1117‒1126. https://doi.org/10.1007/s00468-010-0484-z

Zhang, L., Bi, H., Gove, J. H., & Heath, L. S. (2005). A comparison of alternative methods for estimating the self-thinning boundary line. Canadian Journal of Forest Research, 35(6), 1507‒1514. https://doi.org/10.1139/x05-070

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente