Revista Chapingo Serie Ciencias Forestales y del Ambiente
Predictive model for the estimation of sediment volume captured by lama-bordo systems in the Mixteca Alta of Oaxaca, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Keywords

hydrologic indices
micro-watershed
morphometric parameters
lama-bordo system
sediment transport

How to Cite

Santiago-Mejía, B. E. ., Fernández-Reynoso, D. S. ., López-Pérez, A. ., Bolaños-González, M. A. ., Palerm-Viqueira, J., & Macedo-Cruz, A. . (2024). Predictive model for the estimation of sediment volume captured by lama-bordo systems in the Mixteca Alta of Oaxaca, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(2), 1–17. https://doi.org/10.5154/r.rchscfa.2022.12.086

##article.highlights##

  • Morphometric and hydrological parameters were determined in 27 sites with a lama-bordo system (LBS).
  • The LBS studied correspond to micro-watersheds with area < 2 km 2 , altitude > 2 000 m, and slope > 10 %.
  • The prediction model of soil volume captured by the LBS was obtained with multiple linear regression.
  • Two morphological and two hydrological parameters explained 85 % of the cumulative sediment volume.

Abstract

Introduction: The lama-bordo systems (LBS) are built in natural watercourses and favor retention of sediment and runoff moisture for the development of agricultural activity.
Objective: To obtain a model for predicting the volume of soil permanently captured by LBS, based on the morphometric and hydrological characteristics of the micro-watersheds where they have prevailed in the Mixteca Alta of Oaxaca, Mexico
Materials and methods: The study was carried out in 27 sites where morphometric parameters and hydrological indexes were determined to obtain the volume prediction model by multiple linear regression (backward elimination technique).
Results and discussion: The systems studied were found in micro-watersheds under conditions that favor sediment transport: elongated shape, areas smaller than 2 km2 with 1st and 2nd order streams, at altitudes above 2 000 m and slopes greater than 10 %. Twelve morphometric parameters and three hydrological indexes characterize these micro-watersheds and explain the physical conditions that allow their establishment, but only four (micro-watershed area, average slope of the mainstream, topographic wetness index and sediment transport index) explain the cumulative sediment volume (R2 = 0.85, P < 0.001).
Conclusions: The model evaluated for volume estimation is reliable for application at sites under similar conditions.

https://doi.org/10.5154/r.rchscfa.2022.12.086
PDF
Graphical abstract
Resumen gráfico

References

Abu El-Magd, S. A., Orabi, H. O., Ali, S. A., Parvin, F., & Pham, Q. B. (2021). An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters. Environmental Earth Sciences, 80(20), 1‒17. https://doi.org/10.1007/s12665-021-10013-0

Ahmad, I., Dar, M. A., Teka, A. H., Gebre, T., Gadissa, E., & Tolosa, A. T. (2019). Application of hydrological indices for erosion hazard mapping using Spatial Analyst tool. Environmental Monitoring and Assessment, 191(8), 1‒16. https://doi.org/10.1007/s10661-019-7614-x

Balasubramani, K., Gomathi, M., Bhaskaran, G., & Kumaraswamy, K. (2019). GIS-based spatial multi-criteria approach for characterization and prioritization of micro-watersheds: a case study of semi-arid watershed, South India. Applied Geomatics, 11(3), 289‒307. https://doi.org/10.1007/s12518-019-00261-y

Bannari, A., Ghadeer, A. El-Battay, A., Hameed, N. A., & Rouai, M. (2017). Detection of areas associated with flash floods and erosion caused by rainfall storm using topographic attributes, hydrologic indices, and GIS. In S. Pirasteh, & J. Li (Eds.), Global changes and natural disaster management: Geo-information technologies (pp. 155‒174). Springer, Cham. https://doi.org/10.1007/978-3-319-51844-2_13

Beven, K., & Kirkby, M. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43‒69. https://doi.org/10.1080/02626667909491834

Bocco, G., Solís, B., Orozco, Q., & Ortega, A. (2019). La agricultura de terrazas en la adaptación a la variabilidad climática en la Mixteca Alta, Oaxaca, México. Journal of Latin American Geography, 18(1), 141‒168. https://doi.org/10.1353/lag.2019.0006

Campos, D. (1992). Procesos del ciclo hidrológico. Editorial Universitaria Potosina.

Chandniha, S. K., & Kansal, M. L. (2017). Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India. Applied Water Science, 7(1), 329‒338. https://doi.org/10.1007/s13201-014-0248-9

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México, Instituto de Geografía. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/ view/83/82/251-1

Guerra, A. J. T., Fullen, M. A., Jorge, M. C. O., Bezerra, J. F. R., & Shokr, M. S. (2017). Slope processes, mass movement and soil erosion: A review. Pedosphere, 27(1), 27‒41. https://doi.org/10.1016/S1002-0160(17)60294-7

Horton, R. (1932). Drainage basin characteristics. Transactions, American Geophysical Union, 13(3), 350‒361. https://doi.org/10.1029/TR013i001p00350

Instituto Nacional de Estadística y Geografía (INEGI). (2001). Conjunto de datos vectoriales fisiográficos (Shape). Continuo Nacional Serie I. Escala 1:1,000,000. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267575

Instituto Nacional de Estadística y Geografía (INEGI). (2005). Conjunto de datos edafológicos (Shape). Serie I. Escala 1:1,000,000. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267636

Instituto Nacional de Estadística y Geografía (INEGI). (2010). Red hidrográfica 2.0 (Shape). Escala 1:50,000. https://antares.inegi.org.mx/analisis/red_hidro/siatl/

Instituto Nacional de Estadística y Geografía (INEGI). (2013). Continuo de elevaciones mexicano 3.0 (Raster). 15 m * 15 m. https://www.inegi.org.mx/app/geo2/elevacionesmex/

Instituto Nacional de Estadística y Geografía (INEGI). (2014). Conjunto de datos de erosión del suelo (Shape). Escala 1:250,000. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825004223

Kandekar, V. U., Gavit, B. K., Atre, A. A., Bansod, R. B., & Nimbalkar, C. A. (2021). Morphometric analysis of Agadgaon watershed using remote sensing and geographic information system. Journal of Pharmacognosy and Phytochemistry, 10(2), 450‒460. https://doi.org/10.22271/phyto.2021.v10.i2f.13839

Kaufmann, I., Kaufmann, A., Garcia, S., & Alves, T. (2017). Performance of methods for estimating the time of concentration in a watershed of a tropical region. Hydrological Sciences Journal, 62(14), 2406‒2414. https://doi.org/10.1080/02626667.2017.1384549

Kumar, S., & Chaudhary, B. S. (2016). GIS applications in morphometric analysis of Koshalya-Jhajhara watershed in northwestern India. Journal of the Geological Society of India, 88(5), 585‒592. https://doi.org/10.1007/s12594-016-0524-4

Kusre, B. C. (2016). Morphometric analysis of Diyung watershed in northeast India using GIS technique for flood management. Journal of the Geological Society of India, 87(3), 361‒369. https://doi.org/10.1007/s12594-016-0403-z

Leigh, D. S., Kowalewski, S. A., & Holdridge, G. (2013). 3400 years of agricultural engineering in Mesoamerica: lama-bordos of the Mixteca Alta, Oaxaca, México. Journal of Archaeological Science, 40(11), 4107‒4011. https://doi.org/10.1016/j.jas.2013.05.009

López, A., & Fernández, D. S. (2021). Watershed prioritization using morphometric analysis and vegetation index: a case study of Huehuetan river sub-basin, Mexico. Arabian Journal of Geosciences, 14(8), 1‒21. https://doi.org/10.1007/s12517-021-08212-x

Malik, A., Kumar, A., & Kandpal, H. (2019). Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arabian Journal of Geosciences, 12(4), 1‒12. https://doi.org/10.1007/s12517-019-4310-7

Manyevere, A., Muchaonyerwa, P., Mnkeni, P. N. S., & Laker, M. C. (2016). Examination of soil and slope factors as erosion controlling variables under varying climatic conditions. CATENA, 147, 245‒257. https://doi.org/10.1016/j.catena.2016.06.035

Méndez-Gutiérrez, A., Corral-Rivas, S., Nájera-Luna, J. A., Cruz-Cobos, F., & Pompa-García, M. (2021). Análisis morfométrico de la cuenca El Salto, Durango, México. Terra Latinoamericana, 39, 1‒11. https://doi.org/10.28940/terra.v39i0.641

Miller, V. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area, Virginia and Tennessee. Project NR 389-402, Technical Report 3, Columbia University. Department of Geology, New York.

Moore, I., Gessler, P., Nielsen, N., & Peterson, G. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443‒452. https://doi.org/10.2136/sssaj1993.03615995005700020026x

Moore, I., Grayson, R. & Ladson, A. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3‒30. https://doi.org/10.1002/hyp.3360050103

Palacio, J. L., Rosado, E., Ramírez, X., Oropeza, O., Cram, S., Ortiz, M. A., Figueroa, J. M., & Fernández de Castro, G. (2016). Erosion, culture and geoheritage; the case of Santo Domingo Yanhuitlán, Oaxaca, México. Geoheritage, 8(4), 359‒369. https://doi.org/10.1007/s12371-016-0175-2

Parupalli, S., Kumari, K., & Ganapuram, S. (2019). Assessment and planning for integrated river basin management using remote sensing, SWAT model and morphometric analysis (case study: Kaddam river basin, India). Geocarto International, 34(12), 1332‒1362. https://doi.org/10.1080/10106049.2018.1489420

Pérez, I. Y., Gardezi, A. K., Fernández, D. S., Escalona, M. J., & Haro, G. (2019). Analysis of ecosystem services in the Oaxacan Mixtec region (Tiltepec watershed). International Journal Environmental & Agriculture Research, 5(8), 1‒12. https://doi.org/10.5281/zenodo.3383012

Pérez Sánchez, J. M. (2019). Agricultural terraces in Mexico. In M. Varotto, L. Bonardi, & P. Tarolli (Eds.), World terraced landscapes: History, environment, quality of life (pp. 159‒176). Springer, Cham. https://doi.org/10.1007/978-3-319-96815-5_10

Pérez, V. (2016). Terrace agriculture in the Mixteca Alta region, Oaxaca, México: ethnographic and archeological insights on terrace construction and labor organization. Culture, Agriculture, Food and Environment, 38(1), 18‒27. https://doi.org/10.1111/cuag.12062

Pérez, V., & Anderson, K. (2013). Terracing in the Mixteca Alta, Mexico: Cycles of resilience of an ancient land-use strategy. Human Ecology, 41(3), 335‒349. doi: 10.1007/s10745-013-9578-8

Pourali, S. H., Arrowsmith, C., Chrisman, N., Matkan, A. A., & Mitchell, D. (2014). Topography wetness index application in Flood-Risk-Based land use planning. Applied Spatial Analysis and Policy, 9(1), 39‒54. https://doi.org/10.1007/s12061-014-9130-2

Prabhakar, A. K., Singh, K. K., Lohani, A. K., & Chandniha, S. K. (2019). Study of Champua watershed for management of resources by using morphometric analysis and satellite imagery. Applied Water Science, 9(5), 1‒16. https://doi.org/10.1007/s13201-019-1003-z

QGIS (2022). QGIS Geographic Information System. Un sistema de información geográfica libre y de código abierto. http://www.qgis.org

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. URL https://R-project.org/

Raduła, M., Szymura, T., & Sxymura, M. (2018). Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values. Ecological Indicators, 85, 172‒179. https://doi.org/10.1016/j.ecolind.2017.10.011

Rai, P., Chandel, R., Mishra, V., & Singh, P. (2018). Hydrological inferences trough morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Applied Water Science, 8, 15. https://doi.org/10.1007/s13201-018-0660-7

Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020). Morphometric analysis of the Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11, 100434. https://doi.org/10.1016/j.gsd.2020.100434

Rawat, K. S., & Mishra, A. K. (2016). Evaluation of relief aspects morphometric parameters derived from different sources of DEMs and its effects over time of concentration of runoff (TC). Earth Science Informatics, 9(4), 409‒424. https://doi.org/10.1007/s12145-016-0261-7

Reyes, A., Martínez, M. R., Rubio, E., García, E., & Exebio, A. A. (2019). Impacto del sistema zanja bordo sobre la cobertura vegetal en pastizales de la región Mixteca, estado de Oaxaca. Terra Latinoamericana, 37, 231‒242. https://doi.org/10.28940/terra.v37i3.327

Rivas, M., Rodríguez, B., & Palerm, J. (2008). El sistema de jollas una técnica de riego no convencional en la Mixteca. Boletín del Archivo Histórico del Agua, 13 (número especial), 6‒16. https://biblat.unam.mx/hevila/Boletindelarchivohistoricodelagua/2008/vol13/noesp/1.pdf

Różycka, M., Migoń, P., & Michniewicz, A. (2017). Topographic wetness index and terrain ruggedness Index in geomorphic characterization of landslide terrains on examples, from the Sudetes, SW Poland. Zeitschrift für Geomorphologie, 61(2), 61‒80. https://doi.org/10.1127/zfg_suppl/2016/0328

Ruengvirayudh, P., & Brooks, G. P. (2016). Comparing stepwise regression models to the best-subsets models, or, the art of stepwise. General Linear Model Journal, 42(1), 1‒14. http://www.glmj.org/archives/articles/Pornchanok_v42n1.pdf

Schumm, S. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597‒646. https://doi.org/10.1130/0016-7606(1956)67[597:eodsas]2.0.co;2

Shri, K., Sumeet, M., Renu, D., & Surjeet, S. (2015). Morphometric analysis of Sonar sub-basin using SRTM data and geographical information system (GIS). African Journal of Agricultural Research, 10(12), 1401‒1406. https://doi.org/10.5897/AJAR2013.7907

Singh, P., Gupta, A., & Singh, M. (2014). Hydrological inferences from watersheds analysis for water resource management using remote sensing and GIS techniques. The Egyptian Journal of remote Sensing and Space Science, 17(2), 111‒121. https://doi.org/10.1016/j.ejrs.2014.09.003

Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7(5), 2089‒2102. https://doi.org/10.1007/s13201-016-0395-2

Spores, R. (1969). Settlement, farming technology, and environment in the Nochixtlan Valley, Science, 166(3905), 557‒569. https://doi.org/10.1126/science.166.3905.557

Sridhar, P., & Ganapuram, S. (2021). Morphometric analysis using fuzzy analytical hierarchy process (FAHP) and geographic information systems (GIS) for the prioritization of watersheds. Arabian Journal Geosciences, 14(236). https://doi.org/10.1007/s12517-021-06539-z

Strahler, A. N. (1964) Quantitative geomorphology of drainage basin and channel networks. In V. T. Chow (Ed.), Handbook of applied hydrology (pp. 39‒76). McGraw Hill Book Company.

Sujatha, E. R., Selvakuma, R., Rajasimman, U. A. B., & Rajamanickam, G. V. (2015). Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM. Geomatics, Natural Hazards and Risk, 6(4), 326‒341. https://doi.org/10.1080/19475705.2013.845114

Sukristiyanti, S., Maria, R., & Lestiana, H. (2017). Watershed-based morphometric analysis: a review. IOP Conference Series: Earth Environmental Science, 118(1), 012028. https://doi.org/10.1088/1755-1315/118/1/012028

Toledo, M. L., Fernández, D. S., Martínez, M. R., Rubio, E., & García, J. L. (2018). Identificación de covariables ambientales que influyen en la formación de cárcavas en la Mixteca Oaxaqueña. Terra Latinoamericana, 36(4), 323‒335. https://doi.org/10.28940/terra.v36i4.329

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente