Revista Chapingo Serie Ciencias Forestales y del Ambiente
Interaction and compatibility in reciprocal grafting with two varieties of Pinus pseudostrobus Lindl.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF
Graphical abstract
Resumen gráfico

Keywords

taxonomic affinity
terminal cleft grafting
homografts
intervarietal grafts
genotypes

How to Cite

Barrera-Ramírez, B.-R., Vargas-Hernández, J. J., Gómez-Cárdenas, G.-C., Treviño-Garza, E. J., & Pérez-Luna, A. (2023). Interaction and compatibility in reciprocal grafting with two varieties of Pinus pseudostrobus Lindl. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 30(1), 1–16. https://doi.org/10.5154/r.rchscfa.2022.10.079

##article.highlights##

  • var. pseudostrobus genotypes had higher survival (47. 2 %) compared to var. oaxacana.
  • Some genotypes of var. pseudostrobus interact better as scion than as rootstock.
  • Survival was higher for intervarietal grafts (53.3 %).
  • Shoot growth was higher for genotype 62 of var. pseudostrobus (18.1 cm).

##article.graphical##

Abstract

Introduction: Compatibility between the parts involved in grafting is one of the factors defining its success, growth, and productivity.
Objective: The aim of this study is to determine the effect of the level of taxonomic affinity in the scion/rootstock combination on the survival and shoot growth of reciprocal grafts of Pinus pseudostrobus var. pseudostrobus and P. pseudostrobus var. oaxacana.
Materials and methods: The effect of the following three factors was determined: (a) three affinity levels, (b) two varieties of P. pseudostrobus and (c) four scion/ rootstock genotypes, on survival and shoot growth (Sg). An ANOVA was performed to determine the effect of factors a, b and c and their interactions on survival and Sg, and a Log-Rank test was carried out for survival analysis.
Results and discussion: Factor a determined that survival was higher in intervarietal grafts (53.3 %); factor b indicated that grafts with scions of var. pseudostrobus had higher survival (47.2 %); finally, factor c showed the existence of genotypes that increase success if used as scion and decrease if used as rootstock. Sg only showed statistical differences associated with the effect of factor c, being higher for genotype 62 of var. pseudostrobus (18.1 ± 0.63 cm), and in its interaction with factor (a).
Conclusions: There is an adequate level of compatibility between the two varieties of P. pseudostrobus with significant effect of variety and scion genotype especially in intervarietal grafting (survival greater than 70 %).

https://doi.org/10.5154/r.rchscfa.2022.10.079
PDF
Graphical abstract
Resumen gráfico

References

Ahsan, M. U., Hayward, A., Alam, M., Bandaralage, J. H., Topp, B., Beveridge, C. A., & Mitter, N. (2019). Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology, 19(1),1‒11. https://doi.org/10.1186/s12870-019-1994-5

Barrera-Ramírez, R., González-Cubas, R., Treviño-Garza, E. J., González-Larreta, B., & López-Aguillón, R. (2020). Áreas potenciales para establecer Unidades Productoras de Germoplasma Forestal con dos variedades de Pinus pseudostrobus en México. Bosque (Valdivia), 41(3), 277‒287. https://doi.org/10.4067/S0717-92002020000300277

Barrera-Ramírez, R., Vargas-Hernández, J. J., López-Aguillón, R., Muñoz-Flores, H. J., Treviño-Garza, E. J., & Aguirre-Calderón, O. A. (2021). Impact of external and internal factors on successful grafting of Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(2), 243–256. https://doi.org/10.5154/r.rchscfa.2020.05.037

Castro-Garibay, S. L., Villegas-Monter, A., & López-Upton, J. (2017). Anatomy of rootstocks and scions in four pine species. Forest Research, 6, 1–6. https://doi.org/10.4172/2168-9776.1000211

Darikova, J. A., Savva, Y. V., Vaganov, E. A., Grachev, A. M., & Kuznetsova, G. V. (2011). Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). Journal of Siberian Federal University. Biology, 1(4), 54‒63. https://cyberleninka.ru/article/n/grafts-of-woody-plants-and-the-problem-of-incompatibility-between-scion-and-rootstock-a-review

Gaspar, R. G. B., Wendling, I., Stuepp, C. A., & Angelo, A. C. (2017). Rootstock age and growth habit influence top grafting in Araucaria angustifolia. CERNE, 23(4), 465‒471. https://doi.org/10.1590/01047760201723042447

Goldschmidt, E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 1‒9. https://doi.org/10.3389/fpls.2014.00727

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457‒481.

Kita, K., Kon, H., Ishizuka, W., Agathokleous, E., & Kuromaru, M. (2018). Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): a comparison between Japanese larch (L. kaempferi) and F1hybrid larch (L. gmelinii var. japonicaV × L. kaempferi) rootstocks. Silvae Genetica, 67(1), 111‒116. https://doi.org/10.2478/sg-2018-0016

Koepke, T., & Dhingra, A. (2013). Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Reports, 32, 1321–1327. https://doi.org/10.1007/s00299-013-1471-9

López-Hinojosa, M., de María, N., Guevara, M. A., Vélez, M. D., Cabezas, J. A., Díaz, L. M., Mancha, J. A., Pizarro, A., Manjarrez, L. F., Collada, C., Díaz-Sala, C., & Cervera-Goy, M. T. (2021). Rootstock effects on scion gene expression in maritime pine. Scientific Reports, 11(1), 1‒16. https://doi.org/10.1038/s41598-021-90672-y

Loewe-Muñoz, V., Del Río, R., Delard, C., & Balzarini, M. (2022). Enhancing Pinus pinea cone production by grafting in a non-native habitat. New Forests, 53(1), 37‒55. https://doi.org/10.1007/s11056-021-09842-5

Loupit, G., & Cookson, S. J. (2020). Identifying molecular markers of successful graft union formation and compatibility. Frontiers in Plant Science, 11, 610352. https://doi.org/10.3389/fpls.2020.610352

Martínez, M. (1943). Una nueva especie de Pinus mexicano. Madroño, 7(1), 4‒8. https://www.jstor.org/stable/41422467

Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., & Carvajal, M. (2010). Physiological aspects of rootstock scion interactions. Scientia Horticulturae, 127(2), 112–118. https://doi.org/10.1016/j.scienta.2010.08.002

Milošević, T., Milošević, N., & Glišić, I. (2015). Apricot vegetative growth, tree mortality, productivity, fruit quality and leaf nutrient composition as affected by Myrobalan rootstock and Blackthorn Inter-Stem. Erwerbs-Obstbau, 57(2), 77‒91. https://doi.org/10.1007/s10341-014-0229-z

Muñoz-Flores, H. J., Prieto-Ruíz, J. Á., Flores, G. A., Pineda, O. T., & Morales, G. E. (2013). Técnicas de injertado enchapado lateral y fisura terminal en Pinus pseudostrobus Lindl. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias.

Patiño-Valera, F. (1973). Floración, fructificación y recolección de conos y aspectos sobre semilla de pinos mexicanos. Bosques y Fauna, 10(4), 20‒30.

Pérez-Luna, A., Prieto-Ruíz, J. Á., López-Upton, J., Carrillo-Parra, A., Wehenkel, C., Chávez-Simental, J. A., & Hernández-Díaz, J. C. (2019). Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Forests, 10(2), 112. https://doi.org/10.3390/f10020112

Pérez-Luna, A., Wehenkel, C., Prieto-Ruíz, J. Á., López-Upton, J., & Hernández-Díaz, J. C. (2020). Survival of side grafts with scions from pure species Pinus engelmannii Carr. and the P. engelmannii × P. arizonica Engelm. var. arizonica hybrid. PeerJ, 8, e8468. https://doi.org/10.7717/peerj.8468

Solorio-Barragán, E. R., Delgado-Valerio, P., Molina-Sánchez, A., Rebolledo-Camacho, V., & Tafolla-Martínez, M. Á. (2021). Interspecific grafting as an alternative for asexual propagation of Pinus rzedowskii Madrigal & Caball. Del. in danger extinction. Revista Chapingo Serie Ciencias Forestales, 27(2), 277–288. https://doi.org/10.5154/r.rchscfa.2020.06.04

Statistical Analysis System Institute (SAS). (2013). SAS computer software v. 9.4. Cary, NC, USA.Świerczyński, S., Kolasiński, M., Urbaniak, M., Stachowiak, A., & Nowaczyk, N. (2018). Influence of rootstock and grafting date on the success and grafts growth of two cultivars of pines. Horticulture, 21(4), 06. https://doi.org/10.30825/5.EJPAU.165.2018.21.4

Valdés, A. E., Fernández, B., & Centeno, M. L. (2003). Alterations in endogenous levels of cytokinins following grafting of Pinus radiata support ratio of cytokinins as an index of ageing and vigor. Journal of Plant Physiology, 160(11), 1407‒1410. https://doi.org/10.1078/0176-1617-00992

Viveros-Viveros, H., Sáenz-Romero, C., Vargas-Hernández, J. J., & López-Upton, J. (2006). Variación entre procedencias de Pinus pseudostrobus establecidas en dos sitios en Michoacán, México. Revista Fitotecnia Mexicana, 29(2), 121‒121. https://www.redalyc.org/pdf/610/61029204.pdf

Viveros-Viveros, H., & Vargas-Hernández, J. J. (2007). Dormancia en yemas de especies forestales. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 13(2), 31‒135. https://www.redalyc.org/pdf/629/62913206.pdf

Zobel, B. J., & Talbert, J. T. (1988). Técnicas de mejoramiento genético de árboles forestales. Ed. Limusa.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Revista Chapingo Serie Ciencias Forestales y del Ambiente