##article.highlights##
- Modern sawmills had 7 % higher yields compared to band sawmills.
- Diameter and taper of logs had no effect on the sawing coefficient.
- The product distribution according to thickness, width and length was not different between types of industries.
- Equipment with modern technology allow efficient utilization of raw materials.
Abstract
Introduction: Sawmilling is the most important industrial activity in the forestry sector, being the most widely used methodology for the conversion of roundwood.
Objective: To statistically compare volumetric yield and percentage distribution of sawn products by comparing two industrial technologies in ejido sawmills in the state of Chihuahua.
Materials and methods: Three ejido industries with thin-cutting technology and two with band saws were studied, the sawing coefficient with and without bark was estimated, and volumetric yield of sawn timber according to thickness, width and length was determined. Comparison between industry types was made with Student’s T-test.
Results and discussion: Yield without bark was different between modern and traditional industries
(P = 0.007) with sawing coefficients of 60.93 and 53.09 %, respectively. Log diameter and taper had no effect on yield, suggesting that yield is mainly affected by the technological capacity of sawing equipment. The percentage distribution of nominal thickness indicates that 88.90 mm wood shows the most important differences in yield according to the type of industry; however, they are not significant (P = 0.345). Furthermore, no significant differences (P > 0.05) were found in the nominal widths 101.60 mm, 152.40 mm
and 203.20 mm or in the lengths from 2.44 to 4.88 m.
Conclusion: The equipment with modern technologies allows the efficient use of raw materials because the sawing coefficient was higher in modern sawmills.
References
Borz, S. A., Oghnoum, M., Marcu, M. V., Lorincz, A., & Proto, A. R. (2021). Performance of small-scale sawmilling operations: a case study on time consumption, productivity and main ergonomics for a manually driven bandsaw. Forests, 12(6), 810. https://doi.org/10.3390/f12060810
Cardenas, E., Orellana, L. H., Konstantinidis, K. T., & Mohn, W. W. (2018). Effects of timber harvesting on the genetic potential for carbon and nitrogen cycling in five North American forest ecozones. Scientific Reports, 8(1), 3142. https://doi.org/10.1038/s41598-018-21197-0
Fekiač, J., Gáborík, J., & Vojtkuliak, M. (2021). Properties of plywood made from perforated veneers. Forests, 12(12). https://doi.org/10.3390/f12121709
Gatto, D. A., Santini, E. J., Haselein, C. R., Durlo, M. A., & Calegari, L. (2005). Produção madeireira na região da Quarta Colônia de Imigração Italiana do Rio Grande do Sul. Ciência Florestal, 15(2), 177‒189. https://periodicos.ufsm.br/cienciaflorestal/article/view/1835/1099
Grigsby, W. J., Carpenter, J. E. P., Thumm, A., Sargent, R., & Hati, N. (2015). Labile extractable urea-formaldehyde resin components from medium-density fiberboard*. Forest Products Journal, 65(1-2), 15‒19. https://doi.org/10.13073/FPJ-D-14-00030
Herrera-Medina, J. F., & Leal-Pulido, R. O. (2012). Generación de patrones de corte a partir de la programación matemática para la planificación táctoca-operativa de aserríos madereros. Colombia Forestal, 15(2), 227‒245. https://doi.org/10.14483/udistrital.jour.colomb.for.2012.2.a07
Hetemäki, L., & Hurmekoski, E. (2016). Forest products markets under change: Review and research implications. Current Forestry Reports, 2(3), 177‒188. https://doi.org/10.1007/s40725-016-0042-z
Holzfeind, T., Kanzian, C., & Gronalt, M. (2021). Challenging agent-based simulation for forest operations to optimize the European cable yarding and transport supply chain. International Journal of Forest Engineering, 32(1), 77‒90. https://doi.org/10.1080/14942119.2021.1850074
Husch, B., Beers, T. W., & Kershaw, J. A. (2003). Forest mensuaration (4.a ed.). John Wiley and Sons, Inc.
Hyytiäinen, A., Viitanen, J., & Mutanen, A. (2011). Production efficiency of independent finnish sawmills in the 2000’s. Baltic Forestry, 17(2), 280‒287. https://www.researchgate.net/publication/289576778_Production_Efficiency_of_Independent_Finnish_Sawmills_in_the_2000's
IBM Corp. (2017). IBM SPSS Statistics para Windows, versión 25.0. Armonk, Nueva York: IBM Corp.
Kehinde, A. L., Awoyemi, T. T., Omonona, B. T., & Akande, J. A. (2010). Technical efficiency of sawnwood production in Ondo and Osun states, Nigeria. Journal of Forest Economics, 16(1), 11‒18. https://doi.org/10.1016/j.jfe.2009.04.001
Lähtinen, K., Toppinen, A., Mikkilä, M., Toivio, M., & Suur-Uski, O. (2016). Corporate responsibility reporting in promoting social license to operate in forestry and sawmilling industries. Forestry: An International Journal of Forest Research, 89(5), 525–541. https://doi.org/10.1093/forestry/cpv055
Lauri, P., Forsell, N., Di Fulvio, F., Snäll, T., & Havlik, P. (2021). Material substitution between coniferous, non-coniferous and recycled biomass – Impacts on forest industry raw material use and regional competitiveness. Forest Policy and Economics, 132, 102588. https://doi.org/10.1016/j.forpol.2021.102588
Lundmark, R., Lundgren, T., Olofsson, E., & Zhou, W. (2021). Meeting challenges in forestry: Improving performance and competitiveness. Forests, 12(2). https://doi.org/10.3390/f12020208
Makkonen, M. (2018). Stakeholder perspectives on the business potential of digitalization in the wood products industry. BioProducts Business, 3(6), 63‒80. https://doi.org/10.22382/bpb-2018-006
Marchesan, R., Rocha, M., Silva, J. B., & Klitzke, R. J. (2014). Eficiência técnica no desdobro principal de toras de três espécies tropicais. Floresta, 44(4), 629‒636. http://doi.org/10.5380/rf.v44i4.26537
Melo, L., Silva, C., Lopes, K., Brito, P., & Santos, I. (2012). Resíduos de serraria no estado do Pará: Caracterização, quantificação e utilização adequada. Floresta e Ambiente, 19(1), 113‒116. http://doi.org/10.4322/floram.2012.012
Monserud, R. A., Parry, D. L., & Todoroki, C. L. (2004). Recovery from simulated sawn logs with sweep. New Zealand Journal of Forestry Science, 34(2), 190‒205. https://www.scionresearch.com/__data/assets/pdf_file/0003/59160/05_Monserud_Todoroki.pdf
Murara, M. I., Pereira, M., & Timofeiczyk, R. (2005). Rendimento em madeira serrada de Pinus taeda para duas metodologias de desdobro. Floresta, 35(3), 473‒483. http://doi.org/10.5380/rf.v35i3.5186
Nájera Luna, J. A., Adame Villanueva, G. H., Méndez González, J., Vargas Larreta, B., Cruz Cobos, F., Hernández, F. J., & Aguirre Calderón, C. G. (2012). Rendimiento de la madera aserrada en dos aserraderos privados de El Salto, Durango, México. Investigación y Ciencia, (55) 11‒23. https://investigacion.uaa.mx/RevistaIyC/archivo/revista55/Articulo%202.pdf
Nájera Luna, J. A., Aguirre Treviño, O. A., Treviño Garza, E., Jiménez Pérez, J., Jurado Ybarra, E., Corral Rivas, J. J., & Vargas Larreta, B. (2011). Rendimiento volumétrico y calidad dimensional de la madera aserrada en aserraderos de El Salto, Durango. Revista Mexicana de Ciencias Forestales, 2(4), 77‒92. https://doi.org/10.29298/rmcf.v2i4.610
Ortiz, R., Martínez, S. D., Vázquez, D. E., & Juárez, W. S. (2016). Determinación del coeficiente y calidad de aserrío del género Pinus en la región Sierra Sur, Oaxaca, México. Colombia Forestal, 19(1), 79‒93. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.1.a06
Quirós, R., Chinchilla, O., & Gómez, M. (2005). Rendimiento en aserrío y procesamiento primario de madera proveniente de plantaciones forestales. Agronomía Costarricense: Revista de Ciencias Agrícolas, 29(2), 7‒15. https://www.redalyc.org/pdf/436/43629201.pdf
Rascón-Solano, J., Aguirre-Calderón, O., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E., & Nájera-Luna, J. (2022). Productividad del abastecimiento e industrialización maderable en el ejido Aboreachi, Guachochi, Chihuahua. Revista Mexicana de Ciencias Forestales, 13(71), 133‒158. https://doi.org/10.29298/rmcf.v13i71.1142
Rascón-Solano, J., Olivas-Garcia, J. M., Kiessling-Davison, C. M., Hernández-Salas, J., & López-Daumas, G. (2020). Incremento de la rentabilidad de la industria forestal en el Ejido Aboreachi, Chihuahua, México. Custos e @gronegocio Online, 15(4), 219‒249. http://www.custoseagronegocioonline.com.br/numero4v15/OK%2010%20costos.pdf
Sheppard, J. P., Chamberlain, J., Agúndez, D., Bhattacharya, P., Chirwa, P. W., Gontcharov, A., Sagona, W. C. J., Shen, H.-l., Tadesse, W., & Mutke, S. (2020). Sustainable forest management beyond the timber-oriented status quo: Transitioning to co-production of timber and non-wood forest products—a global perspective. Current Forestry Reports, 6(1), 26‒40. https://doi.org/10.1007/s40725-019-00107-1
Stragliotto, M. C., Melo, J., Costa, A., & Corradi, B. L. (2019). Yield in sawn wood and residue utilization of Qualea paraensis ducke and Erisma uncinatum warm. Floresta, 49(2), 257‒266. http://doi.org/10.5380/rf.v49i2.57284
Townsend, L., Dodson, E., Anderson, N., Worley-Hood, G., & Goodburn, J. (2019). Harvesting forest biomass in the US southern Rocky Mountains: cost and production rates of five ground-based forest operations. International Journal of Forest Engineering, 30(2), 163‒172. https://doi.org/10.1080/14942119.2018.1563851
Tymendorf, Ł., & Trzciński, G. (2020). Multi-factorial load analysis of pine sawlogs in transport to sawmill. Forests, 11(4). https://doi.org/10.3390/f11040366
Vaughan, D., Mackes, K., & Webb, J. B. (2018). Time-since-death and its effect on wood from beetle-killed Engelmann spruce in southwest Colorado. Forest Science, 64(3), 316–323. https://doi.org/10.1093/forsci/fxx017
Zavala, D., & Hernández, R. (2000). Análisis del rendimiento y utilidad del proceso de aserrío de trocería de pino. Madera y Bosques, 6(2), 41‒55. https://doi.org/10.21829/myb.2000.621374

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente