##article.highlights##
- Pinus patula grafting performance ranged from 70 to 82.5 %
- The scion genotype and rootstock family interaction influenced graft survival.
- Grafting with genotype G115 and family F105 were the most successful.
- Scions and rootstocks of the same genotype or family were not favorable for graft compatibility.
Abstract
Introduction: Clonal orchards increase genetic gain, usually established by grafting. In pines, scion rootstock genetic compatibility could improve grafted plant production.
Objectives: To evaluate scion-rootstock compatibility of Pinus patula Schiede ex Schltdl. & Cham. in response to genotypic variation.
Materials and methods: Scions of four outstanding genotypes (G105, G106, G114 and G115) were grafted onto rootstocks of the same half-sib families (F105, F106, F114 and F115) in all combinations in a randomized complete block design. The following were evaluated: grafting, survival, needle development and growth in length and diameter of the graft.
Results and discussion: The analysis of variance indicated that grafting ranged from 70 to 82.5 %; the effect was significant only for the scion genotype factor (P < 0.0001), being higher with G115. The genotype*family interaction had significant effect (P < 0.0001) on graft survival; the best combinations were G115 + F114 (85 %), G114 + F105 (80 %), G115 + F105 (75 %) and G115 + F106 (75 %). G105 (26 cm) and G115 (2 mm) had the highest values (P < 0.05) for growth in length and diameter, respectively. All the grafts developed needles after five months.
Conclusions: Grafting with genotype G115 and family F105, in combination with any family or genotype, were the most successful. Scions and rootstocks of the same genotype or family were not favorable for graft compatibility in P. patula.
References
Aparicio-Rentería, A., Viveros-Viveros, H., Rebolledo-Camacho, V. (2013). Huertos semilleros clonales: Una alternativa para los programas de reforestación en Veracruz. Revista Mexicana de Ciencias Forestales, 4(20), 90–97. doi: https://doi.org/10.29298/
rmcf.v4i20.373
Barrera-Ramírez, R., Vargas-Hernández, J. J., López-Aguillón, R., Muñoz-Flores, H. J., Treviño-Garza, E. J., & Aguirre-Calderón, O. A. (2020). Influencia de factores externos e internos en el prendimiento inicial de injertos de Pinus pseudostrobus var. oaxacana (Mirov) Harrison. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(2), 243–456. doi: https://doi.org/10.5154/r.rchscfa.2020.05.037
Darikova, J. A., Savva, Y. V., Vaganov, E. A., Grachev, A. M., & Kuznetsova, G. V. (2011). Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). Journal of Siberian Federal University (Biology), 1(4), 54–63. Retrieved from http://journal.sfu-kras.ru/en/
article/2376
Flores García, A., Morales González, E., Muñoz Flores, H., Prieto Ruiz, J., & Pineda Ojeda, T. (2013). Técnicas de injertado “enchapado lateral” y “fisura terminal” en Pinus pseudostrobus Lindl. México: INIFAP.
Ford, M. C., Jones, B. N., & Chirwa, W. P. (2014). Pinus patula and pine hybrid hedge productivity in South Africa: a comparison between two vegetative propagation systems exposed to natural infection by Fusarium circinatum. Southern Forests, 76(3) 167–175. doi: https://doi.org/10.2989/20702620.2014.916501
Gautier, A. T., Chambaud, C., Brocard, L., Ollat, N., Gambetta, G. A., Delrot, S., & Cookson, S. J. (2019). Merging genotypes: graft union formation and scion-rootstock interactions. Journal of Experimental Botany, 70(3), 747–755. doi: https://doi.org/10.1093/jxb/ery422
Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, 1–9. doi: https://doi.org/10.3389/fpls.2014.00727
González-Jiménez, B., Jiménez-Casas, M., López-Upton, J., LópezLópez, M. Á., Rodríguez-Laguna, R. (2022). Combinación de técnicas de injertación para clonar genotipos superiores de Pinus patula Schiede ex Schltdl. et Cham. Agrociencia, 56(5), 105–117. doi: https://doi.org/10.47163/agrociencia.v56i5.2582
Guadaño, C., Iglesias, S., Leon, D., Arribas, S., Gordo, J., Gil, L., …Mutke, S. (2016). Establecimiento de plantaciones clonales de Pinus pinea para la producción de piñón mediterráneo. España: INIA. Retrieved from https://www.researchgate.net/publication/310287648
Han, Q., Guo, Q., Korpelainen, H., Niinemets, Ü., & Li, C. (2019). Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 39(11), 1855–1866. doi: https://doi.org/10.1093/tree ph ys/tpz102
Hartmann, T. H., Kester, E. D., Davies Jr., T. F., & Geneve, L. R. (2014). Plant propagation principles and practices (8th ed.). USA: Pearson.
Izhaki, A., Yitzhak, Y., Blau, T., David, I., Rotbaum, A., Riov, J., & Zilkah, S. (2018). Rooting of cuttings of selected Dyospyros virginiana clonal rootstocks and bud growth in rooted cuttings. Scientia Horticulturae, 232, 13–21. doi: https://doi.org/10.1016/j.scienta.2017.12.051
Kita, K., Kon, H., Ishizuka, W., Agathokleous, E., & Kuromaru, M. (2018). Survival rate and shoot growth of grafted Dahurian larch (Larix gmelinii var. japonica): a comparison between Japanese larch (L. kaempferi) and F1 hybrid larch (L. gmelinii var. japonica × L. kaempferi) rootstocks. Silvae Genetica, 67(1), 111–116. doi: https://doi.org/10.2478/sg-2018-0016
Lewsey, G. M., Hardcastle, J., T., Melnyk, W. C., Molnar, A., Valli, A., Urich, A. M., …Ecker, R. J. (2016). Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Sciences, 113(6), E801-E810. doi: https://doi.org/10.1073/pnas.1515072113
Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., MotaCadenas, C., & Carvajal, M. (2010). Physiological aspects of rootstock-scion interactions. Scientia Horticulturae, 127(2), 112–118. doi: https://doi.org/10.1016/j.scienta.2010.08.002
Medina Perez, A. M., White, T. L., Huber, D. A., & Martin, T. A. (2007). Graft survival and promotion of female and male strobili by topgrafting in a third-cycle slash pine (Pinus elliottii var. elliottii) breeding program. Canadian Journal of Forest Research, 37(7), 1244–1252. doi: https://doi.org/10.1139/X07-004
Muñoz-Gutiérrez, L, Vargas-Hernández, J. J., López-Upton, J., Ramírez-Herrera, C., Jiménez-Casas, M., Alderete, A., & Díaz-Ruíz, R. (2017). Variación espacial y temporal de la dispersión de polen de un huerto semillero y en rodales naturales cercanos de Pinus patula. Bosque, 38(1), 169–181.
doi: https://doi.org/10.4067/S0717-92002017000100017
Pérez-Luna, A., Prieto-Ruíz, J. Á., López-Upton, J., Carrillo-Parra,
A., Wehenkel, C., Chávez-Simental, J. A., & HernándezDíaz, J. C. (2019). Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Forests, 10(2), 1–18. doi: https://doi.org/10.3390/f10020112
Pérez-Luna, A., Wehenkel, C., Prieto-Ruíz, J. A., López-Upton, J., Solís-González, S., Chávez-Simental, J. A., & HernándezDíaz, J. C. (2020). Grafting in conifers: a review. Pakistan Journal of Botany, 52(4), 1–10. doi: https://doi.org/10.30848/PJB2020-4(10)
Pina, A., Cookson, S. J., Calatayud, A., Trinchera, A., & Errea, P. (2017). Physiological and molecular mechanisms underlying graft compatibility. In G. Colla, F. PérezAlfocea, & D. Schwarz (Eds.), Vegetable grafting: principles and practices (pp. 132–154). Croydon, London, UK: CABI. doi: https://doi.org/10.1079/9781780648972.0000
Sivacioglu, A., Ayan, S., & Celik, A. D. (2009). Clonal variation in growth, flowering and cone production in a seed orchard of Scots pine (Pinus sylvestris L.) in Turkey. African Journal of Biotechnology, 8(17), 4084–4093. Retrieved from https://www.ajol.info/index.php/ajb/article/view/62133
Solorio-Barragán, E. R., Delgado-Valerio, P., Molina-Sánchez, A., Rebolledo-Camacho, V., & Tafolla-Martínez, M. A. (2021). Injerto interespecífico como alternativa para la propagación asexual de Pinus rzedowskii Madrigal & Caball. Del. en riesgo de extinción. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(2), 277–288. doi: https://doi.org/10.5154/r.rchscfa.2020.06.046
Statistical Analysis System (SAS), 2013). The SAS system for Windows version 9.4. Cary, North Carolina, USA: Author
Tandonnet, J. P., Cookson, S. J., Vivin, P., & Ollat, N. (2010). Scion genotype controls biomass allocation and root development in grafted grapevine. Australian Journal of Grape and Wine Research, 16(2), 290–300. doi: https://doi.org/10.1111/j.1755-0238.2009.00090.x
Vargas-Hernández, J. J., & Vargas-Abonce, J. I. (2016). Effect of giberellic acid (GA4/7) and partial stem girdling on induction of reproductive structures in Pinus patula. Forest Systems, 25(2), 1–11. doi: https://doi.org/10.5424/fs/2016252-09254
Warschefsky, J. E., Klein, L. L., Frank, H. M., Chitwood, H. D., Londo, P. J., von Wettberg, J. B. E., & Miller, J. A. (2016). Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science, 21(5), 418–437. doi: https://doi.org/10.1016/j.tplants.2015.11.008
Wendling, I., Trueman, S. J., & Xavier, A. (2014). Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests, 45(4), 473–486. doi: https://doi.org/10.1007/s11056-014-9415-y
White, T. L., Duryea, M. L., & Powell, G. L. (2018). Genetically improved pines for reforesting Florida´s timberlands. EDIS, 2018(1), 6. doi: https://doi.org/10.32473/edis-fr007-2017

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2022 Universidad Autónoma Chapingo