Revista Chapingo Serie Ciencias Forestales y del Ambiente
Fire records based on dendrochronological techniques for a coniferous forest in the southeastern region of Jalisco, Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Pinus douglasiana
winter precipitation
Pacific Oscillation
drought severity
fire regime

How to Cite

González-Tagle, M. A. ., Cerano-Paredes, J., Himmelsbach, W., Alanís-Rodríguez, E., & Colazo-Ayala, Ángel A. (2022). Fire records based on dendrochronological techniques for a coniferous forest in the southeastern region of Jalisco, Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(1), 35–50. https://doi.org/10.5154/r.rchscfa.2022.03.018

##article.highlights##

  • The fire records were reconstructed for a period of 66 years (1945-2011).
  • During 1945-2011 there were 14 forest fires in the southeastern part of Jalisco.
  • The fire regime is frequent, of low severity and occurs in the dry spring period.
  • In years prior to the fires, precipitation was below average.

Abstract

Introduction: There is growing public awareness in Mexico concerning natural resources and, in particular, the threat they face due to the increase in the number of forest fires.
Objective: To reconstruct the fire records of a 66-year period (1945-2011) and analyze its relationship with climate conditions in the southeastern part of Jalisco.
Materials and methods: Pinus douglasiana Martínez samples were processed according to standard dendrochronological techniques. The statistical analysis and relationship of fires with climate were determined with the burnr library of the R program. Winter precipitation and PDSI (Palmer Drought Severity Index) and PDO (Pacific Drought Oscillation) indices were used as proxies for climate.
Results and discussion: All scars (114) were in the zone of initial growth of earlywood; therefore, fires occurred during the spring (dry season). The mean fire frequency interval for the 100 % filter of scars was 5.1 years, for the 10 % filter it was 6.1 years, and for the 25 % filter, representing the most extensive fires, it was 6.4 years. Drought preconditions and dry conditions modulated by the PDO had significant influence on fire occurrence.
Conclusions: Historical reconstruction shows that the fire regime is frequent, of low intensity and with no change over the last four decades. To maintain these characteristics, monitoring and forest fuel management actions are important.

https://doi.org/10.5154/r.rchscfa.2022.03.018
PDF

References

Ávila-Flores, D. Y., González-Tagle, M. A., Jiménez-Pérez, J., Aguirre-Calderón, O. A., Treviño-Garza, E., Vargas-Larreta, B., & Alanís-Rodríguez, E. (2014). Efecto de la severidad del fuego en las características de la estructura forestal en rodales de coníferas. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 20(1), 33–45. doi: https://doi.org/10.5154/r.rchscfa.2013.01.005

Azpeleta Tarancón, A., Fulé, P. Z., Sánchez Meador, A. J., Kim, Y. S., & Padilla, T. (2018). Spatiotemporal variability of fire regimes in adjacent Native American and public forests, New Mexico, USA. Ecosphere, 9(11), e02492. doi: https://doi.org/10.1002/ecs2.2492

Barsimantov, J., & Navia Antezana, J. (2012). Forest cover change and land tenure change in Mexico’s avocado region: Is community forestry related to reduced deforestation for high value crops? Applied Geography, 32(2), 844–853. doi: https://doi.org/10.1016/j.apgeog.2011.09.001

Bowd, E., Blanchard, W., McBurney, L., & Lindenmayer, D. (2021). Direct and indirect disturbance impacts on forest biodiversity. Ecosphere, 12(12). doi: https://doi.org/10.1002 ECS2.3823

Bunn, A. G. (2010). Statistical and visual crossdating in R using the dplR library. Dendrochronologia, 28(4), 251–258. doi: https://doi.org/10.1016/j.dendro.2009.12.001

Cerano-Paredes, J., Villanueva-Díaz, J., Cervantes-Martínez, R., Fulé, P., Yocom, L., Esquivel-Arriaga, G., & JardelPeláez, E. (2015). Historia de incendios en un bosque de pino de la sierra de Manantlán, Jalisco, México. Bosque (Valdivia), 36(1), 41–52. doi: https://doi.org/10.4067/S0717-92002015000100005

Cerano-Paredes, J., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-Martínez, R., Esquivel-Arriaga, G., Guerrade la Cruz, V., & Fulé, P. (2016). Régimen histórico de incendios y su relación con el clima en un bosque de Pinus hartwegii al norte del estado de Puebla, México. Bosque (Valdivia), 37(2), 389–399. doi: https://doi.org/10.4067/S0717-92002016000200017

Cerano-Paredes, J., Villanueva-Díaz, J., Vázquez-Selem, L., Cervantes-Martínez, R., Magaña-Rueda, V. O., Constante-García, V., …Valdez-Cepeda, R. D. (2019). Climatic influence on fire regime (1700 to 2008) in the Nazas watershed, Durango, Mexico. Fire Ecology, 15(9). doi: https://doi.org/10.1186/s42408-018-0020-x

Comisión Nacional Forestal (CONAFOR). (2022). Cierre estadístico de incendios 2021. Retrived from https://www.gob.mx/cms/uploads/attachment/file/691111/Cierre_de_la_Temporada_2021.pdf

De la Vega-Rivera, A., & Merino-Pérez, L. (2021). Socio-environmental impacts of the avocado boom in the Meseta Purépecha, Michoacán, Mexico. Sustainability (Switzerland), 13(13). doi: https://doi.org/10.3390/su13137247

Escoto-García, T., Beas-Beas, N., Contreras-Quiñones, J. H., Rodríguez-Rivas, A., Díaz-Ramos, S. G., AnzaldoHernández, J., & Vega-Elvira, R. (2017). Chemicalmicrographic and dasometric characterization of three pine species and their viability for integral harvesting. Revista Mexicana de Ciencias Forestales, 8(41). Retrieved from https://www.scielo.org.mx/pdf/remcf/v8n41/2007-1132-remcf-8-41-00109-en.pdf

Fulé, P. Z., Villanueva-Díaz, J., & Ramos-Gómez, M. (2005). Fire regime in a conservation reserve in Chihuahua, Mexico. Canadian Journal of Forest Research, 35(2), 320–330. doi: https://doi.org/10.1139/x04-173

Fulé, P. Z., Yocom, L. L., Montaño, C. C., Falk, D. A., Cerano, J., & Villanueva-Díaz, J. (2012). Testing a pyroclimatic hypothesis on the Mexico-United States border. Ecology, 93(8), 1830–1840. doi: https://doi.org/10.1890/11-1991.1

Galicia, L., Potvin, C., & Messier, C. (2015). Maintaining the high diversity of pine and oak species in Mexican temperate forests: a new management approach combining functional zoning and ecosystem adaptability. Canadian Journal of Forest Research, 45(10), 1358–1368. doi: https://doi.org/10.1139/cjfr-2014-0561

García, E. (2014). Modificaciones al sistema de clasificación Köppen(5.a ed.). México: Universidad Nacional Autónoma de México. Retrieved from http://www.igeograf.unam.mx/sigg/utilidades/docs/pdfs/publicaciones/geo_siglo21/serie_lib/modific_al_sis.pdf

González Tagle, M., Avila Flores, D. Y., Himmelsbach, W., & Cerano Paredes, J. (2020). Fire history of conifer forests of Cerro el Potosí, Nuevo León, Mexico. The Southwestern Naturalist, 64(3–4), 203–209. doi: https://doi.org/10.1894/0038-4909-64.3-4.203

González-Tagle, M., Schwendenmann, L., Jiménez Pérez, J., & Schulz, R. (2008). Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. Forest Ecology and Management, 256(1–2), 161–167. doi: https://doi.org/10.1016/j.foreco.2008.04.021

Grissino-Mayer, H. D. (1999). Modeling fire interval data from the American southwest with the Weibull distribution. International Journal of Wildland Fire, 9(1), 37–50. Retrieved from http://www.publish.csiro.au/paper/WF99004

Grissino-Mayer, H. D. (2001a). Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research, 57(2), 205–221. Retrieved from https://repository.arizona.edu/bitstream/handle/10150/251654/trr-57-02-205-221.pdf

Grissino-Mayer, H. D. (2001b). FHX2-Software for analyzing temporal and spatial patterns in fire regimes from tree rings. Tree Ring Research, 51(1), 115–124. Retrieved from https://repository.arizona.edu/handle/10150/262559

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 109. doi: https://doi.org/10.1038/s41597-020-0453-3

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage International Journal of Wildland Fire, 18(1), 116. doi: https://doi.org/10.1071/WF07049

Keeley, J. E., & Pausas, J. G. (2019). Distinguishing disturbance from perturbations in fire-prone ecosystems. International Journal of Wildland Fire, 28(4), 282–287. doi: https://doi.org/10.1071/WF18203

Luckman, B. H. (2013). Dendroclimatology. In Scott A. Elias, & Cary J. Mock (Eds.), Encyclopedia of quaternary science (pp. 459–470). Elsevier. doi: https://doi.org/10.1016/B978-0-444-53643-3.00354-X

Malevich, S. B., Guiterman, C. H., & Margolis, E. Q. (2018). burnr: Fire history analysis and graphics in R. Dendrochronologia, 49, 9–15. doi: https://doi.org/10.1016/j.dendro.2018.02.005

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. doi: https://doi.org/10.1175/1520-0477(1997)078

McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., …Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. doi: https://doi.org/10.1111/1365-2745.13403

Meunier, J., & Shea, M. E. (2020). Applying the usual rules to an unusual ecological situation: Fire rotation in Great Lakes Pine Forests. Forest Ecology and Management, 472(118246), 1–11. doi: https://doi.org/10.1016/j.foreco.2020.118246

Molina-Pérez, I. M., Cerano-Paredes, J., Rosales-Mata, S., Villanueva-Díaz, J., Cervantes-Martínez, R., Esquivel-Arriaga, G., & Cornejo-Oviedo, E. (2017). Frecuencia histórica de incendios (1779-2013) en bosques de pino-encino de la comunidad de Charcos, Mezquital, Durango. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(1), 91–104. doi: https://doi.org/10.5154/r.rchscfa.2016.03.017

National Centers for Environmental Information (NCEI). (2021). Pacific Decadal Oscillation (PDO). Retrieved from December 9, 2021, from https://www.ncdc.noaa.gov/teleconnections/pdo/

Pavia, E. G., Graef, F., & Reyes, J. (2006). Notes and correspondence PDO – ENSO effects in the climate of Mexico. Journal of Climate, 19(24), 6433–6438. doi: https://doi.org/10.1175/JCLI4045.1

Petropoulos, G. P., Griffiths, H. M., & Kalivas, D. P. (2014). Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS. Applied Geography, 50, 120–131. doi: https://doi.org/10.1016/j.apgeog.2014.02.006

Phipps, R. L. (1985). Collecting, preparing, crossdating, and measuring tree increment cores geological survey. Retrieved from https://pubs.usgs.gov/wri/1985/4148/report.pdf

Quintero-Gradilla, S. D., Jardel-Peláez, E. J., Cuevas-Guzmán, R., García-Oliva, F., & Martínez-Yrizar, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25(3). doi: https://doi.org/10.21829/myb.2019.2531888

Rodríguez-Trejo, D. A., & Fulé, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 12(1), 23–37. doi: https://doi.org/10.1071/WF02040

Rubio Camacho, E. A., González Tagle, M. A., Benavides Solorio, J. D. D., Chávez Durán, Á. A., & Xelhuantzi Carmona, J. (2017). Relación entre necromasa, composición de especies leñosas y posibles implicaciones del cambio climático en bosques templados. Revista Mexicana de Ciencias Agrícolas, (13), 2601–2614. doi: https://doi.org/10.29312/remexca.v0i13.486

Sáenz-Ceja, J. E., & Pérez-Salicrup, D. R. (2019). Dendrochronological reconstruction of fire history in coniferous forests in the Monarch Butterfly Biosphere Reserve, Mexico. Fire Ecology, 15(18), 1–18. doi: https://doi.org/10.1186/s42408-019-0034-z

Safford, H. D., Hayward, G. D., Heller, N. E., & Wiens, J. A. (2012). Historical ecology, climate change, and resource management: Can the past still inform the future? In: John A. Wiens, Gregory D. Hayward, Hugh D. Safford, & Catherine M. Giffen (Eds.), Historical environmental variation in conservation and natural resource management(pp. 46–62). doi: https://doi.org/10.1002/9781118329726.ch4

Schoennagel, T., Balch, J. K., Brenkert-Smith, H., Dennison, P. E., Harvey, B. J., Krawchuk, M. A., …Whitlock, C. (2017). Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences, 114(18), 4582–4590. doi: https://doi.org/10.1073/pnas.1617464114

Seidl, R., Schelhaas, M. J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4(9), 806–810. doi: https://doi.org/10.1038/nclimate2318

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., … Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7, 395–402. doi: https://doi.org/10.1038/nclimate3303

Stahle, D. W., Cook, E. R., Burnette, D. J., Villanueva, J., Cerano, J., Burns, J. N., … Howard, I. M. (2016). The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quaternary Science Reviews, 149, 34–60. doi: https://doi.org/10.1016/J.QUASCIREV.2016.06.018

Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., …Woods, A. J. (2011). Climate change and forest diseases. Plant Pathology, 60(1), 133–149. doi: https://doi.org/10.1111/j.1365-3059.2010.02406.x

United Nations Environment Programme (UNEP). (2022). Spreading like wildfire-The rising threat of extraordinary landscape fires. A rapid response assessment. Nairobi: UNEP. Retrieved from https://wedocs.unep.org/20.500.11822/38372

VoorTech Consulting. (2021). The tree ring measuring program project J2X [Computer software]. Holderness, New Hampshire: Author. Retrieved from http://www.voortech.com/projectj2x/tringTechSupportInfo.html

Wardle, D. A., & Peltzer, D. A. (2017). Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biological Invasions, 19(11), 3301–3316. doi: https://doi.org/10.1007/s10530-017-1372-x

Watson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., … Lindenmayer, D. (2018). The exceptional value of intact forest ecosystems. Nature Ecology and Evolution, 2, 599–610. doi: https://doi.org/10.1038/s41559-018-0490-x

World Wide Found & Boston Consoulting Group. (2020). Fires, forest and the future: A crisis raging out of control? Retrieved from https://wwfeu.awsassets.panda.org/downloads/wwf_fires_forests_and_the_future_report.pdf

Yocom Kent, L. (2014). An evaluation of fire regime reconstruction methods. ERI Working Paper No. 32. Retrieved from https://www.nwfirescience.org/sites/default/files/publications/doc.pdf

Yocom, L., & Fulé, P. Z. (2012). Human and climate influences on frequent fire in a high-elevation tropical forest. Journal of Applied Ecology, 49(6), 1356–1364. doi: https://doi.org/10.1111/j.1365-2664.2012.02216.x

Yocom, L., Fulé, P. Z., Brown, P. M., Cerano, J., VillanuevaDíaz, J., Falk, D. A., & Cornejo-Oviedo, E. (2010). El Niño-southern oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology, 91(6), 1660–1671. doi: https://doi.org/10.1890/09-0845.1

Yocom, L., Fulé, P. Z., Falk, D. A., García-Domínguez, C., Cornejo-Oviedo, E., Brown, P. M., …Cortés-Montaño, C. (2014). Fine-scale factors influence fire regimes in mixed-conifer forests on three high mountains in Mexico. International Journal of Wildland Fire, 23(7), 959–968. doi: https://doi.org/10.1071/WF13214

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Autónoma Chapingo