Revista Chapingo Serie Ciencias Forestales y del Ambiente
Forest management accelerates aboveground biomass accumulation in a temperate forest of Central Mexico
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Pinus patula
ecosystem services
aboveground net primary productivity
biomass allocation
tree structure

How to Cite

Chávez-Aguilar, G., Pérez-Suárez, M., Gayosso-Barragán, O., López-López, M. Á., & Ángeles-Pérez, . G. (2022). Forest management accelerates aboveground biomass accumulation in a temperate forest of Central Mexico. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 29(1), 15–33. https://doi.org/10.5154/r.rchscfa.2022.03.014

##article.highlights##

  • AGB production and ANPP increased across the Chronosequence.
  • The 30-years old stand produced 79 % of the AGB observed in the NMF.
  • In both, the 30-years old stand and the NMF, a high AGB corresponded with high ANPP, showing 87 % similarity.
  • Stems are the structural component with the highest AGB allocation.

Abstract

Introduction: Sustainable forest management focuses on securing environmental services while maintaining aboveground biomass (AGB) accumulation.
Objective: To evaluate the AGB along of a Chronosequence of temperate forest and to examine the role of forest management for timber production on patterns of AGB fixation, increment and allocation.
Materials and methods: A chronosequence of stands dominated by Pinus patula Schiede ex Schltdl. & Cham. was selected in a range from 7 to 30 years. AGB was estimated with allometric models and with parameterized models to infer the age at which the managed forest reaches its maximum production. AGB production, aboveground net aerial primary productivity (ANPP), increments in AGB and their allocation to tree structural components were calculated and compared with those of a natural forest (NMF).
Results and discussion: AGB and APPN increased with stand age throughout the chronosequence. The 30-year-old stand produced 79 % of the AGB observed in the NMF. These two sites had high AGB production, which corresponded to high ANPP with 87 % similarity. Stems were the tree structural component with the highest AGB allocation (70 %), mainly due to silvicultural practices such as thinning, which is part of the forest management program.
Conclusions: P. patula forests with forest management accelerated the accumulation of AGB in temperate forest stands along the chronosequence studied, reaching levels similar to those of a NMF in a shorter period.

https://doi.org/10.5154/r.rchscfa.2022.03.014
PDF

References

Ángeles-Pérez, G. (2009). El bosque mesófilo de montaña en el estado de Hidalgo. In A. I. Monterroso-Rivas (Ed.), El bosque mesófilo de montaña en el estado de Hidalgo: perspectiva ecológica ante el cambio climático (pp. 39–53). Estado de México, México: Editorial Universidad Autónoma Chapingo.

Ángeles-Pérez, G., Wayson, C., Birdsey, R., Valdez-Lazalde, J. R., De los Santos-Posadas, H. M., & PlascenciaEscalante, F. O. (2012). Sitio intensivo de monitoreo de flujos de CO2 a largo plazo en bosques bajo manejo en el centro de México. In F. Paz & Cuevas, R. M. (Eds.), Estado actual del conocimiento del ciclo del carbono y sus interacciones en México: Síntesis a 2011 (pp. 793–797). Toluca, México: Programa Mexicano del Carbono, Universidad Autónoma del Estado de México e Instituto Nacional de Ecología.

Barrero, M. H., Alvárez, L. D., Nepveu, I. G., García, C., & Guera, M. (2011). Turno de corta paras Pinus caribaea Morelet var. caribaea Barret y Golfari en la empresa forestal integral “Macurije”. Revista Científica Avances, 13(2), 1–10. Retrieved from http://www.ciget.pinar.cu/Revista/No.2011-2/articulos/Turnodecorta_Pinus_Caribaea.pdf

Brockerhoff, E. G., Barbaro, L., Castagneyrol, B., Forrester, D. I., Gardiner, B., González-Olabarria, J. R., Lyver, P. O., …Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26, 3005–3035. doi: https://doi.org/10.1007/s10531-017-1453-2

Calvillo García, J. C., Cornejo Oviedo, H. E., Valencia Mazo, S., & Flores López, C. (2005). Estudio epidométrico para Pinus herrerae Martínez en la región de Cd. Hidalgo, Michoacán, México. Foresta Veracruzana, 7(1), 5–10. Retrieved from http://www.redalyc.org/articulo.oa?id=49770102

Castelán-Lorenzo, M., & Arteaga-Martínez, B. (2009). Establecimiento de regeneración de Pinus patula Schl. et Cham. en cortas bajo el método de árboles padres. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 49–57. Retrieved from https://revistas.chapingo.mx/forestales/?section=articles&subsec=issues&numero=39&articulo=506

Chávez-Aguilar, G., Ángeles-Pérez, G., Pérez-Suárez, M., López-López, M. Á., García-Moya, E., & Wayson, C. (2016). Distribución de biomasa aérea en un bosque de Pinus patula bajo gestión forestal en Zacualtipán, Hidalgo, México. Madera y Bosques, 22(3), 23–36. doi: https://doi.org/10.21829/myb.2016.2231454

Clark, D., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. (2001). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 2(11), 356–370. doi: https://doi.org/10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2

Duncker, P. S., Raulund-Rasmussen, K., Gundersen, P., Katzensteiner, K., De Jong, J., Ravn, H. P., Smith, M., …Spiecker, H. (2012). How forest management affects ecosystem services, including timber production and economic return: Synergies and trade-offs. Ecology and Society, 17(4), 50. doi: https://doi.org/10.5751/ES-05066-170450

Figueroa-Navarro, C. M., Ángeles-Pérez, G., VelázquezMartínez, A., & de los Santos-Posadas, H. (2010). Estimación de la biomasa en un bosque bajo manejo de Pinus patula Schltdl. et Cham. en Zacualtipán, Hidalgo. Revista Mexicana de Ciencias Forestales, 1(1), 147–157. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322010000100012

García, E. (2004). Modificaciones al sistema de clasificación climática Köppen. Ciudad de México: IG, UNAM. Guillespie, A. J. R. (1992). Pinus patula Schiede and Deepe. Retrieved from http://www.bio-nica.info/biblioteca/Gillespie1992PinusPatula.pdf

Häyhä, T., Franzese, P. P., Paletto, A., & Fath, B. D. (2015). Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosystem Services, 14, 12–23. doi: https://doi.org/10.1016/j.ecoser.2015.03.001

Hu, M., Lehtonen, A., Minunno, F., & Mäkelä, A. (2020). Age effect on tree structure and biomass allocation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Annals of Forest Science, 77(90), 1–15. doi: https://doi.org/10.1007/s13595-020-00988-4

Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K., & Horodecki, P. (2019). Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. European Journal of Forest Research, 138(4), 673–683. doi: https://doi.org/10.1007/s10342-

-01197-z

Kowalski, A. S., Loustau, D., Berbigier, P., Manca, G., Tedeschi, V., Borghetti, M., Valentini§, R., …Grace, J. (2004). Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Global Change Biology, 10(10), 1707–1723. doi: https://doi.org/10.1111/j.1365-2486.2004.00846.x

Law, B. E., Riitters, K. H., & Ohmann, L. F. (1992). Growth in relation to canopy light interception in a red pine (Pinus resinosa) thinning study. Forest Science, 38(1), 199–202. Retrieved from https://www.fs.usda.gov/treesearch/pubs/26074

Marchi, M., Paletto, A., Cantiani, P., Bianchetto, E., & De Meo, I. (2018). Comparing thinning system effects on ecosystem services provision in artificial black pine (Pinus nigra J. F. Arnold) forests. Forests, 9(4), 188. doi: https://doi.org/10.3390/f9040188

Mayer, M., Prescott, C. E., Abaker, W. E. A., Augusto, L., Cécillon, L., Ferreira, G. W. D., James, J., …Vesterdal, L. (2020). Tamm review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466, 118127. doi: https://doi.org/10.1016/j.foreco.2020.118127

Méndez-González, J., Luckie-Navarrete, S. L., Capó-Arteaga, M. Á., & Nájera-Luna, J. A. (2011). Ecuaciones alométricas y estimación de incrementos en biomasa aérea y carbono en una plantación mixta de Pinus devoniana Lindl. y Pinus pseudostrobus Lindl., en Guanajuato, México. Agrociencia, 45(4), 479–491. Retrieved from https://agrociencia-colpos.mx/index.php/agrociencia/article/view/894

Mendoza-Ponce, A., & Galicia, L. (2010). Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry, 83(5), 497–506. doi: https://doi.org/10.1093/forestry/cpq032

Montero, G., Ruiz-Peinado, R., & Muñoz, M. (2005). Producción de biomasa y fijación de CO2 por los bosques españoles. Madrid, España: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria Ministerio de Educación y Ciencia. Retrieved from https://www.researchgate.net/publication/235639682

Musálem, M. A. (2006). Silvicultura de plantaciones forestales comerciales. Estado de México, México: Universidad Autónoma Chapingo. Retrieved from http://dicifo.chapingo.mx/pdf/publicaciones/silvicultura_plantaciones_forestales_comerciales_2006.pdf

Peichl, M., & Arain, M. A. (2006). Above- and belowground ecosystem biomass and carbon pools in an agesequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140(1-4), 51–63. doi: https://doi.org/10.1016/j.agrformet.2006.08.004

Peng, C., Zhang, L., & Liu, J. (2001). Developing and validating nonlinear height-diameter models for major tree species of Ontario’s Boreal forests. Northern Journal of Applied Forestry, 18(3), 87–94. doi: https://doi.org/10.1093/njaf/18.3.87

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., …Wagner, F. (2003). Good practice guidance for land use, land-use change and forestry. Japan: Institute for Global Environmental Strategies (IGES) for the IPCC. Retrieved from https://www.ipcc.ch/publication/good-practice-guidance-for-land-useland-use-change-and-forestry/

Pérez-Suárez, M., Arredondo-Moreno, J. T., & HuberSannwald, E. (2012). Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite. Biogeochemistry, 108, 245–258. doi: https://doi.org/10.1007/s10533-011-9594-y

Pérez-Suárez, M., Arredondo-Moreno, J. T., Huber-Sannwald, E., & Vargas-Hernández, J. J. (2009). Production and quality of senesced and green litterfall in a pine–oak forest in central northwest Mexico. Forest Ecology and Management, 258(7), 307–1315. doi: https://doi.org/10.1016/j.foreco.2009.06.031

Ponce-Vargas, A., Luna-Vega, I., Alcántara-Ayala, O., & Ruiz-Jiménez, C. A. (2006). Florística del bosque mesófilo de montaña de Monte Grande, Lolotla, Hidalgo, México. Revista Mexicana de Biodiversidad, 77(2), 177–190. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-34532006000200004

Porter-Bolland, L., Ellis, E. A., Guariguata, M. R., RuizMallén, I., Negrete-Yankelevich, S., & Reyes-García, V. (2012). Community managed forests and forests protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management, 268, 6–17. doi: https://doi.org/10.1016/j.foreco.2011.05.034

Restrepo, C., & Alviar, M. (2010). Tasa de descuento y rotación forestal: el caso del Eucalyptus saligna. Lecturas de Economía, (73), 146–144. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-25962010000200006&lng=en&tlng=es

Rocha-Loredo, A. G., & Ramírez-Marcial, N. (2009). Producción y descomposición de hojarasca en diferentes condiciones sucesionales del bosque de pino-encino en Chiapas, México. Boletín de la Sociedad Botánica de México, (84), 1–12. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0366-21282009000100001

Rodríguez-Ortíz, G., Aldrete, A., González-Hernández, V. A., De los Santos-Posadas, H. M., Gómez-Guerrero, A., & Fierros-González, A. M. (2011). ¿Afecta los aclareos la acumulación de biomasa aérea en una plantación de Pinus patula? Agrociencia, 45(6), 719–732. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952011000600007

Ryan, M. G., Binkley, D., Fownes, J. H., Giardina, C., & Senock, R. S. (2004). An experimental test of the causes of forest growth decline with stand age. Ecological Monographs, 74(3), 393–414. Retrieved from https://www.fs.usda.gov/treesearch/pubs/12397

SAS Institute Inc. (2009). SAS© web report studio 4.2; User´s guide. Cary, NC: Author

Schöngart, J. (2008). Growth-Oriented Logging (GOL): A new concept towards sustainable forest management in Central Amazonian várzea floodplains. Forest Ecology and Management, 256(1-2), 46–58. doi: https://doi.org/10.1016/j.foreco.2008.03.037

Schulze, E. D., Körner, C., Law, B. E., Haberl, H., & Luyssaert, S. (2000). Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 4(6), 611–616. doi: https://doi.org/10.1111/j.1757-1707.2012.01169.x

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2014). Programa Nacional Forestal 2014-2018. Retrieved from https://www.ccmss.org.mx/wp-content/uploads/2014/10/Programa_Nacional_Forestal_2014-2018.pdf

Soriano-Luna, M. Á., Ángeles-Pérez, G., Guevara, M., Birdsey, R., Pan, Y., Vaquera-Huerta, H., Valdez-Lazalde, J. R., …Vargas, R. (2018). Determinants of above-ground biomass and its spatial variability in a temperate forest managed for timber production. Forests, 9(490), 1–20. doi: https://doi.org/10.3390/f9080490

Soriano-Luna, M. A., Ángeles-Pérez, G., Martínez-Trinidad, T., Plascencia-Escalante, F. O., & Razo-Zárate, R. (2015). Estimación de biomasa aérea por componente estructural en Zacualtipán, Hidalgo, México. Agrociencia, 49(4), 423–438. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952015000400006

Strukelj, M., Brais, S., & Paré, D. (2015). Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands. European Journal of Forest Research, 134(5), 737–754. doi: https://doi.org/10.1007/s10342-015-0880-4

Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C., Moors, E. J., Granier, A., …Jarvis, P. G. (2000). Respiration as the main determinant of carbon balance in European Forests. Nature, 404(6780), 861–865. doi: https://doi.org/10.1038/35009084

Vargas, R., Yépez, E. A., Andrade, J. L., Ángeles, G., Arredondo, T., Castellanos, A. E., Delgado, B. J., …Watts, C. (2013). Progress and opportunities for monitoring greenhouse gases fluxes in Mexican ecosystems: The MexFlux network. Atmósfera, 26(3), 325–336. Retrieved from https://www.revistascca.unam.mx/atm/index.php/atm/article/view/30690

Velázquez, M. A., Ángeles, P. G., Llanderal, O. T., Román, J. A. R., & Reyes, H. V. (2004). Monografía de Pinus patula. México: Colegio de Postgraduados, Comisión Nacional Forestal.

Vignote, P. S., Martínez, R. I., & Villasante, P. A. (2011). La silvicultura como primera operación de transformación de la madera. Revista Mexicana de Ciencias Forestales, 2(4), 5–12. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322011000200002&lng=es&nrm=iso

Wang, S. Y., Chang, F. C., Lee, I. C., Yang, S. L., & Lin, F. C. (2005). The study on the effective utilization of Japanese cedar thinned logs. Journal of the Experimental Forest of National Taiwan University, 19(4), 293–300. doi: https://doi.org/10.1038/s41598-018-21510-x

Zhao-gang, L., & Feng-ri, L. I. (2003). The generalized Chapman-Richard function and applications to tree and stand growth. Journal of Forestry Research, 14(1), 19–26. doi: https://doi.org/10.1007/BF02856757

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Autónoma Chapingo