Revista Chapingo Serie Ciencias Forestales y del Ambiente
Yield and vivipary of pecan nut (Carya illinoinensis [Wangenh.] K. Koch) in relation to soil moisture
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

nut
Western variety
premature germination
fruit size
kernel percentage

How to Cite

Rodríguez-González, M., Arreola-Ávila, J. G., Trejo-Calzada, R., Cueto-Wong, J. A., Zegbe-Domínguez, J. A., Reyes-Juárez, I., & Borja-de la Rosa, A. (2021). Yield and vivipary of pecan nut (Carya illinoinensis [Wangenh.] K. Koch) in relation to soil moisture. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(1), 155–167. https://doi.org/10.5154/r.rchscfa.2021.07.046

Abstract

Introduction: Viviparity in pecan nut (Carya illinoinensis [Wangenh.] K. Koch) has increased considerably. This genetic-environmental phenomenon can be controlled with soil moisture management and other quality variables.
Objective: To determine the effect of soil moisture content on yield, nut size, kernel percentage and germinated nut on the tree.
Materials and methods: Forty-year-old pecan nut trees were irrigated by 40 emitters with an output of 3.2 L∙h-1. From the phenological stage of shell hardening, irrigation time was 4, 6 and 8 h, corresponding to moisture levels of 0.257, 0.327 and 0.380 m3 of water per m3 of soil, at depths of 40 to 80 cm. Yield per tree, germinated nut percentage, fruit size and kernel percentage were evaluated during the production cycles of 2016 and 2017 production cycles.
Results and discussion: During the two production cycles, when soil moisture level increased from 0.257 to 0.380 m3 ∙m-3, nut yield per tree, fruit length and diameter, and kernel percentage increased on average 23.8 %, 25.3 and 10 %, and 1.8 %, respectively; however, vivipary increased 11.2 %, which was reflected in the decrease of commercial pecan nut percentage. Treatments 0.327 and 0.380 m3 ∙m-3 had a similar effect (P > 0.05) on these variables.
Conclusions: The lower moisture level (0.257 m3 ∙m-3), starting at the kernel filling stage, decreased vivipary and increased commercial kernel percentage.

https://doi.org/10.5154/r.rchscfa.2021.07.046
PDF

References

Aguilar-Pérez, H., Arreola-Ávila, J. G., Morales-Olais, E., Cuéllar-Villarreal, E., Lagarda-Murrieta, A., TarangoRivero H., …Lombardini, L. (2015). ‘Norteña’ Pecan. HortScience, 50(9), 1399–1400. doi: https://doi.org/10.21273/HORTSCI.50.9.1399

Babuin, M. F., Echeverría, M., Menedez, A. B., & Maiale, S. J. (2016). Arbuscular mycorryhizal pecan seedlings alleviate effect of restricted water suly. HortScience, 5(3), 212–215. doi: https://doi.org/10.21273/HORTSCI.51.3.212

Cohen, M., Valancogne, C., Dayau, S., Ameglio, T., Cruiziant., P., & Archer, P. (1997). Yield and physiological responses of walnut trees in semiarid conditions: application to irrigation scheduling. Acta de Horticultura, 449, 273–280. doi: https://doi.org/10.17660/ActaHortic.1997.449.39

Duermeyer, L., Khodaanahi, E., Yan, D., Krapp, A., Rothstein, S. J., & Nambara, E. (2018). Regulation of seed dormancy and germination by nitrate. Seed Science Research, 28(3), 150–157. doi: https://doi.org/10.1017/S096025851800020X

Farnsworth, E. (2000). The ecology and physiology of viviparous and recalcitrant seeds. Annual Review of Ecology and Systematics, 31, 107–138. doi: https://doi.org/10.1146/annurev.ecolsys.31.1.107

Ferreyra, E. R., Selles, V. G., & Lemus, S. G. (2002). Efecto del estrés hídrico durante la fase II de crecimiento del fruto del duraznero cv. Kakamas en el rendimiento y estado hídrico de las plantas. Agricultura Técnica, 62(4), 565–573. doi: https://doi.org/10.4067/S0365-28072002000400008

García-Moreno, B. Y., Báez-Sañudo, R., Mercado-Ruiz, J. N., García-Robles, J. M., & Núñez-Moreno, J. H. (2020). Bioregulación de la germinación prematura de nuez pecanera mediante aplicaciones precosecha con ácido 2-hidroxibenzoico. Revista Iberoamericana de Tecnología Postcosecha, 21(2), 1–12. Retrieved from http://www.redalyc.org/articulo.oa?id=81365122005

Garrot, D., Kilbby, M., Fangmeier, D., Husman, S., & Ralowics, A. (1993). Production, growth, and nut quality under water stress based on crop water stress index. Journal American Society for Horticultural Science, 118(6), 694–698. doi: https://doi.org/10.21273/JASHS.118.6.694

Grauke, L. J., Wood, B. W., & Harris, M. K. (2016). Crop vulnerability: Carya. HortScience, 51(6), 653–663. doi: https://doi.org/10.21273/HORTSCI.51.6.653

Godoy, A. C., & Huitrón, R. M. (1998). Relaciones hídricas de hojas y frutos de nogal pecanero durante el crecimiento y desarrollo de la nuez. Agrociencia, 32(4), 331–337. Retrieved from https://www.agrocienciacolpos.mx/index.php/agrociencia/article/view/1564

Godoy Avila, C., & López Montoya, I. (2000). Desarrollo de la almendra y germinación del fruto del nogal pecanero bajo cuatro calendarios de riego. Terra Latinoamericana,18(4), 305–311. Retrieved from https://www.redalyc.org/pdf/573/57318404.pdf

Gonçalves Bilharva, M., Roberto Martins, C., Janer Hamann, J., Fronza, D., De Marco, R. and Barbosa Malgarim, M. (2018). Pecan: from research to the Brazilian reality. Journal of Experimental Agriculture International, 23(6), 1–16. doi: https://doi.org/10.9734/JEAI/2018/41899

Herrera, E. (1990). Fruit growth and development of Ideal and Western pecans. Journal of the American Society for Horticultural Science, 115(6), 915–923.

León, G. V. (2014). Ácido abscísico-giberelinas como indicador de viviparidad en nogal pecanero (Carya illinoinensis K.). Hermosillo, Sonora, México: CIAD.

Marco, R. D., Goldschmidt, R. J., Herter, F. G., Martins, C. R., Mello-Farias, P. C., & Uberti, A. (2021). The irrigation effect on nuts’ growth and yield of Carya illinoinensis. Anais da Academia Brasileira de Ciencias, 93(1), 1–8. doi: https://doi.org/10.1590/0001-3765202120181351

Nonogaki, H., Barrero, J. M., & Li, C. (2018). Seed dormancy, germination, and pre-harvest sprouting. Frontiers in Plant Science, 9, 1783. doi: https://doi.org/10.3389/fpls.2018.01783

Orona Castillo, I., Sangerman-Jarquín, D. M., Cervantes Vázquez, M. G., Espinoza Arellano, J. de J., & Núñez Moreno, J. H. (2019). La producción y comercialización de nuez pecanera en México. Revista Mexicana de Ciencias Agrícolas, 10(8), 1797–1808. doi: https://doi.org/10.29312/remexca.v10i8.1833

Ou, S. K., Storey, J. B., & Thompson, T. E. (1994). A northern pecan pollen source delays germination of nuts from a southern pecan cultivar. HortScience, 29(11), 1290–1291. doi: https://doi.org/10.21273/HORTSCI.29.11.1290

Poletto, T., Poletto, I., Moraes Silva, L. M., Briao Muñiz, M. F., Silveira Reiniger, L. R., Richards, N., & Marco, S. V. (2020). Morphological, chemical and genetic analysis of southern Brazilian pecan (Carya illinoinensis) accessions. Acta Horticulturae, 261, 1–7 doi: https://doi.org/10.1016/j.scienta.2019.108863

Prodan, M. (1968). Forest bimetrics. Oxford, Inglaterra: Pergamon Pres.

Reyes Vázquez, N. C., & Morales Landa, J. L. (2019). Agronomía sustentable y aprovechamiento alternativo de la nuez. Agronomía sustentable y aprovechamiento alternativo de la nuez. México: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco CIATEJ. Retrieved from http://ciatej.repositorioinstitucional.mx/jspui/handle/1023/671

Santamaría, J., Medina Morales, M. C., Rivera-González, M., & Faz Contreras, R. (2002). Algunos factores de suelo, agua y planta que afectan la producción y alternancia del nogal pecanero. Revista Fitotecnia Mexicana, 25(2), 119–125. Retrieved from https://www.revistafitotecniamexicana.org/documentos/25-2/1a.pdf

SAS Institute. (2002). Statistical analysis system. The SAS system for Windows version 9.0. Cary, North Carolina, USA: Author.

Servicio Meteorológico Nacional (SMN). (2010). Normales climatológicas por estado. Retrieved from https://smn.conagua.gob.mx/es/climatologia/informacionclimatologica/normales-climatologicas-por-estado

Sifuentes-Ibarra, E., Samaniego-Gaxiola, J. A., AnayaSalgado, A., Núñez-Moreno, J. H., Valdez-Gascón, B., Gutiérrez-Soto, R. G., … Macías-Cervantes, J. (2015). Programación del riego en nogal pecanero (Carya illinoinensis), mediante un modelo integral basado en tiempo térmico. Revista Mexicana de Ciencias Agrícolas, 6(8), 1893–1902. doi: https://doi.org/10.29312/remexca.v6i8.527

Smith, M. W., Reid, W., Carroll, B., & Cheary, B. (1993). Mechanical fruit thinning influences fruit quality, yield, return fruit set, and cold injury of pecan. HortScience, 28(11), 1081-1084. doi: https://doi.org/10.21273/HORTSCI.28.11.1081

Smith, M. W. (2012). Fruit production characteristics in ‘Pawnee’ Pecan. HortScience, 47(4), 489–496. doi: https://doi.org/10.21273/HORTSCI.47.4.489

Sparks, D. (2005). Adaptability of pecan as a species. HortScience, 40(5), 1175–1189. doi: https://doi.org/10.21273/HORTSCI.40.5.1175

Sparks, D., Reid, W., Yates, I., Smith, M. W., & Stevenson, T. G. (1995). Fruiting stress induces shuck decline and premature germination in pecan. Journal of the American Society for Horticultural Science, 120(1), 43–53. doi: https://doi.org/10.21273/JASHS.120.1.43

Stein, L. A. (1985). The influence of fertilization, phloem restriction, irrigation, microbes, and ethephon on pecan shuck disorders in Texas (Ph. D. Diss.), Texas A&M University, Texas, USA.

Taylor, N., Kunene, S., & Pandor, M. (2020). Stick-tights and vivipary in pecans. Retrieved from https://www.sappa.za.org/wp-content/uploads/docs/2020/07/STICKTIGHTS-AND-VIVIPARY-IN-PECANS_v3.pdf

Thompson, T. E. (2005). Pecan fruit shuck thickness is related to nut quality. HortScience, 40(6), 1664–1666. doi: https://doi.org/10.21273/HORTSCI.40.6.1664

United States Department of Agriculture (USDA). (2020). NCGR Pecan/Hickory Database (Pecan Cultivars). Retrieved from https://aggiehorticulture.tamu.edu/usda_pecan/plant_details.php?pid=Success&acno=518130

Walworth, J. L., White, S. A., & Comeau, M. (2017). Soil – applied Zn EDTA: vegetative growth, nut production, and nutrient acquisition of immature pecan trees grown in alkaline calcareous soils. HortScience, 2(2), 300–305. doi: https://doi.org/10.21273/HORTSCI11467-16

Wells, L. (2017). Southeastern pecan growers’ handbook. Georgia, USA: Cooperative Extension Service, University of Georgia College of Agricultural & Environmental Sciences.

White, C. N., Proebsting, W. M., Hedden, P., & Rivin, C. (2000). Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiology, 122(4), 1081–1088. doi: https://doi.org/10.1104/pp.122.4.1081

Wiegand, C., & Swanson, W. (1982). Citrus responses to irrigation: II Fruit yield, size and number. Journal of the Rio Grande Valley Horticultural Society, 35, 87–95. Wood, B. (2015). Regulation of vivipary in pecan. Acta Horticulturae, 1070, 33–42. doi: https://doi.org/10.17660/ActaHortic.2015.1070.3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Universidad Autónoma Chapingo