Revista Chapingo Serie Ciencias Forestales y del Ambiente
Effective protocol to increase the percentage of grafting success of Pinus greggii Engelm. var. australis Donahue et López
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Pinus patula
Pinus teocote
Pinus leiophylla
scion with terminal bud
basal segment scion

How to Cite

Castro-Garibay, S. L., Villegas-Monter, V.-M., López-Upton, J., Sandoval-Villa, M., & Arévalo-Galarza, L. (2023). Effective protocol to increase the percentage of grafting success of Pinus greggii Engelm. var. australis Donahue et López . Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(2), 225–240. https://doi.org/10.5154/r.rchscfa.2021.03.014

Abstract

Introduction: Grafted plants of conifers are used in the establishment of clonal seed orchards, but with the methodology currently used, unsatisfactory results are reported.
Objective: To compare grafting and growth of Pinus greggii var. australis scion from nursery and field stock plants grafted on four rootstocks.
Materials and methods: Scions of P. greggii Engelm. var. australis Donahue et López, collected from nursery stock plants (NSSP) and field trees (FSSP), were divided into terminal bud and basal segment, and grafted onto P. greggii var. australis, P. patula Schiede ex Schltdl. et Cham., P. teocote Schiede ex Schltdl. et Cham. and P. leiophylla Schiede ex Schltdl. et Cham. Percentage of grafting, height increment, diameter, scion-rootstock ratio and number of shoots (NS) were evaluated. Height and diameter increment data were subjected to an ANOVA and NS was analyzed with Poisson regression.
Results and discussion: Grafting ranged from 93 to 100 %. The greatest increase in height was reported for P. teocote (14 cm) with scion from the terminal shoot of the nursery plant, while the combination P. greggii/P. leiophylla had the best scion-rootstock ratio with a value of 1. The highest NS was recorded with scion from the basal segment of NSSP. Getting two types of scions from one scion made the use of vegetative material more efficient.
Conclusions: The use of nursery stock plants, 15-month-old rootstock, and two types of scions allowed having grafted plants in three months. The methodology developed was efficient, cost[1]effective and fast.

https://doi.org/10.5154/r.rchscfa.2021.03.014
PDF

References

Acosta-Pérez, J. A., Ortiz-García, C. F., Zaldivar-Cruz, J. M., Rodríguez-Cuevas, M., Bautista-Muñoz, C. C., & Castillo-Aguilar, C. de la C. (2012). Identificación del agente causal e importancia de la gomosis en la zona citrícola de Huimanguillo, Tabasco, México. Universidad y Ciencia, 23(3), 245–258. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0186-29792012000300004&lng=es&nrm=iso

Aloni, B., Cohen, R., Karni, L., Aktas, H., & Edelstein, M. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127(2), 119–126. doi: https://doi.org/10.1016/j.scienta.2010.09.003

Aparicio-Rentería, A., Viveros-Viveros, H., & RebolledoCamacho, V. (2013). Huertos semilleros clonales: Una alternativa para los programas de reforestación en Veracruz. Revista Mexicana de Ciencias Forestales, 4(20), 90–97. doi: https://doi.org/10.29298/rmcf.v4i20.373

Baron, D., Esteves Amaro, A. C., Pina, A., & Ferreira, G. (2019). An overview of grafting re-establishment in woody fruit species. Scientia Horticulturae, 243, 84–91. doi: https://doi.org/10.1016/j.scienta.2018.08.012

Berdeja-Arbeu, R., Villegas-Monter, A., Ruiz-Posadas, L. M., Sahagún-Castellanos, J., & Colinas-León, M. T. (2010). Interacción lima persa-portainjertos. Efecto en características estomáticas de hoja y vigor de árboles. Revista Chapingo Serie Horticultura, 16(2), 91–97. Retrieved from http://www.scielo.org.mx/pdf/rcsh/v16n2/v16n2a4.pdf

Castro, M., Fassio, C., Cautin, R., & Ampuero, J. (2015). UCV7, portainjerto de aguacate tolerante a salinidad. Revista Fitotecnia Mexicana, 38(1), 85–92. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802015000100011

Castro-Garibay, S. L., Aldrete, A., López-Upton, J., & OrdazChaparro, V. M. (2018). Efecto del envase, sustrato y fertilización en el crecimiento de Pinus greggii var. australis en vivero. Agrociencia, 52(1), 115–127. Retrieved from http://www.scielo.org.mx/pdf/agro/v52n1/1405-3195-agro-52-01-115.pdf

Castro-Garibay, S. L., Villegas-Monter, A., & López-Upton, J. (2017). Anatomy of rootstocks and scions in four pine species. Forest Research: Open Access, 6(3), 1–6. doi: https://doi.org/10.4172/2168-9776.1000211

Girardi, E. A., Mourão Filho, F. A. A., & Kluge, R. A. (2007). Effect of seed coat removal and controlled-release fertilizer application on plant emergence and vegetative growth of two citrus rootstocks. Fruits, 62(1), 13–19. doi: https://doi.org/10.1051/fruits:2006044

Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 25(5), R183-R188. doi: https://doi.org/10.3389/fpls.2014.00727

Gullo, G., Motisi, A., Zappia, R., Dattola, A., Diamanti, J., & Mezzettii, B. (2014). Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality. Food Chemistry, 153, 234–242. doi: https://doi.org/10.1016/j.foodchem.2013.12.056

Korosi, G. A., Powell, K. S., Clingeleffer, P. R., Smith, B., Walker, R. R., & Wood, J. (2011). New hybrid rootstock resistance screening for phylloxera under laboratory conditions. Acta Horticulturae, 904, 53–58. doi: https://doi.org/10.17660/actahortic.2011.904.7

Loewe-Muñoz, V., Del Río, R., Delard, C., & Balzarini, M. (2021). Enhancing Pinus pinea cone production by grafting in a non-native habitat. New Forest, 53, 37–55. doi: https://doi.org/10.1007/s11056-021-09842-5

Martínez-Alonso, C., Kidelman, A., Feito, I., Velasco, T., Alía, R., João G, M., & Majada, J. (2012). Optimization of seasonality and mother plant nutrition for vegetative propagation of Pinus pinaster Ait. New Forest, 43, 651–663. doi: https://doi.org/10.1007/s11056-012-9333-9

Martínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., MotCadenas, C., & Carvajal, M. (2010). Physiological aspects of rootstock-scion interactions. Scientia Horticulturae, 127(2), 112–118. doi: https://doi.org/10.1016/j.scienta.2010.08.002

Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A history of grafting. Horticultural Reviews, 53, 437–493. doi: https://doi.org/10.1002/9780470593776.ch9

Pérez-Luna, A., Prieto-Ruiz, J. A., López-Upton, J., CarrilloParra, A., Wehenkel, C., Chávez-Simental, J. A., & Hernández-Díaz, J. C. (2019). Some factors involved in the success of side veneer grafting of Pinus engelmannii Carr. Forests, 10(2), 112. doi: https://doi.org/10.3390/f10020112

Ramírez-Herrera, C., Vargas-Hernández, J. J., & LópezUpton, J. (2005). Distribución y conservación de las poblaciones naturales de Pinus greggii. Acta Botánica Mexicana, 72, 1–16. doi: https://doi.org/10.21829/abm72.2005.997

Ruiz-Farfán, D, López-Upton, J., Ramírez-Herrera, C., & Rodríguez-Trejo, D. A. (2015). Fenología reproductiva en un ensayo de progenies de Pinus greggii var. australis. Revista Fitotecnia Mexicana, 38(3), 285–296. doi: https://doi.org/10.35196/rfm.2015.3.285

Salazar-García, S., Medina-Torres, R., Ibarra-Estrada, M. E., & González-Valdivia, J. (2016). Influencia de portainjertos clonales sobre la concentración foliar de nutrimentos en aguacate ‘Hass’ cultivado sin riego. Revista Chapingo Serie Horticultura, 22(3), 161–175. doi: https://doi.org/10.5154/r.rchsh.2015.06.013

Souza, L. S., Diniz, R. P., Neves, R. J., Alves, A. A. C., & Oliveira, E. J. (2018). Grafting as a strategy to increase owering of cassava. Scientia Horticulturae, 240, 544–551. doi: https://doi.org/10.1016/j.scienta.2018.06.070

Statistical Analysis System Institute. (2013). SAS computer software v. 9.4. Cary, NC, USA: Author.

Tanaka, M., Takei, K., Kojima, M., Sakakibara, H., & Mori, H. (2006). Auxin controls local cytokinin biosynthesis in nodal stem in apical dominance. The Plant Journal, 45(6), 1028–1036. doi: https://doi.org/10.1111/j.1365-313x.2006.02656.x

The R Foundation. (2018). The R project for statistical computing 3.6.1. USA: Bell Laboratories.

Uribe-Bustamante, A., Curti-Díaz, A. S., HernándezGuerra, C., & Ticante-Montero, S. J. (2013). Calidad de naranja Valencia injertada en 20 portainjertos. Revista Chapingo Serie Horticultura, 19(1), 61–69. doi: https://doi.org/10.5154/r.rchsh.2011.08.043

Velasco-Alvarado, M. J., Lobato-Ortiz, R., García-Zavala, J. J., Castro-Brindis, R., Cruz-Izquierdo, S., & CoronaTorres, T. (2019). Injertos interespecíficos entre Solanum lycopersicum L. y S. habrochaites Knapp & Spooner como alternativa para incrementar el rendimiento de fruto. Agrociencia, 53(7), 1029–1042. Retrieved from https://www.colpos.mx/agrocien/Bimestral/2019/oct-nov/art-7.pdf

Zamora-Rodríguez, V., Peña-Bárgaza, I., HernándezRodríguez, L., & Cueto-Rodríguez, J. L. (2016). Producción de material de propagación certificado de cítricos. CitriFrut, 33(2), 3–13. Retrieved from https://www.researchgate.net/publication/326479791_PRODUCCION_DE_MATERIAL_DE_PROPAGACION_CERTIFICADO_DE_CITRICOS

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Autónoma Chapingo