Revista Chapingo Serie Ciencias Forestales y del Ambiente
Soil inorganic nitrogen pulses and leaf nitrogen resorption in two Pinus hartwegii Lindl. forests
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

coniferous forest
nitrogen reservoirs
nutrient dynamics
ammonium
nitrate

How to Cite

Torres-Duque, F., Gómez-Guerrero, A., Trejo-Téllez, L. I., Reyes-Hernández, V. J., & Correa-Díaz, A. (2023). Soil inorganic nitrogen pulses and leaf nitrogen resorption in two Pinus hartwegii Lindl. forests. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(2), 257–269. https://doi.org/10.5154/r.rchscfa.2021.02.010

Abstract

Introduction: Nutrient movement in high mountain forests generates information on their functioning and response to climate change effects. Nitrogen dynamics in these ecosystems has been poorly studied.
Objective: To quantify N reservoirs in forest litter, topsoil (0-10 cm) and needle litterfall, and to measure temporal concentrations of nitrate and ammonium in topsoil and N resorption (ReabsN) in the Jocotilán (JO) and Tláloc (TL) mountains of central Mexico.
Materials and methods. A total of 108 (JO) and 128 (TL) soil and needle litterfall samples were collected for one year. N and ReabsN reservoirs were compared between mountains using the Wilcoxon test (P < 0.05). Temporal trends of soil moisture, N and ReabsN forms were analyzed with linear mixed models, setting time and mountain as fixed factors.
Results and discussion. Gravimetric moisture, total N, and nitrate and ammonium concentrations were not different between mountains. Total inorganic N (ammonium + nitrate) in JO was higher than in TL (46 vs. 41 mg∙kg-1). N in needle litterfall and soil were higher in JO, but ReabsN in TL was higher (60 vs. 55 %). Soil moisture, ammonium and ReabsN had a seasonal pattern of cubic trend (P < 0.05), denoting N pulses.
Conclusions. Forests showed differences in N dynamics in needle litterfall, resorption and soil inorganic forms of N, indicating that it is possible to differentiate their functioning according to this nutrient.

https://doi.org/10.5154/r.rchscfa.2021.02.010
PDF

References

Arce, J. L., Layer, P. W., Macías, J. L., Morales-Casique, E., GarcíaPalomo, A., Jiménez-Domínguez, F. J., …Vásquez-Serrano, A. (2019). Geology and stratigraphy of the Mexico basin (Mexico city), central Trans-Mexican volcanic Belt. Journal of Maps, 15(2), 320—332. doi: https://doi.org/10.1080/17445647.2019.1593251

Booth, M. S., Stark, J. M., & Rastetter, E. (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75(2), 139—157. doi: https://doi.org/10.1890/04-0988

Bremmer, J. M. (1965). Total nitrogen. In B. C. A. (Ed.), Methods of soil analysis. Part 2. Agronomy 9. Madison, WI, USA: American Society of Agronomy.

Chávez-Vergara, B. M., González-Rodríguez, A., Etchevers, J. D., Oyama, K., & García-Oliva, F. (2015). Foliar nutrient resorption constrains soil nutrient transformations under two native oak species in a temperate deciduous forest in Mexico. European Journal of Forest Research, 134(5), 803—817. doi: https://doi.org/10.1007/s10342-015-0891-1

Chen, L., Wen, Y., Zeng, J., Wang, H., Wang, J., Dell, B., & Liu, S. (2019). Differential responses of net N mineralization and nitrification to throughfall reduction in a Castanopsis hystrix plantation in Southern China. Forest Ecosystems, 6(1), 14. doi: https://doi.org/10.1186/s40663-019-0174-2

Correa-Díaz, A., Gómez-Guerrero, A., Vargas-Hernández, J. J., Rozenberg, P., & Horwath, W. (2020). Long-term wood micro-density variation in alpine forests at Central México and their spatial links with remotely sensed information. Forests, 11(4), 452. doi: https://doi.org/10.3390/f11040452

Correa-Díaz, A., Silva, L., Horwath, W., Gómez-Guerrero, A., Vargas-Hernández, J., Villanueva-Díaz, J., . . . VelázquezMartínez, A. (2020). From trees to ecosystems: Spatiotemporal scaling of climatic impacts on montane landscapes using dendrochronological, isotopic, and remotely sensed data. Global Biogeochemical Cycles, 34(3), e2019GB006325. doi: https://doi.org/10.1029/2019GB006325

Correa-Díaz, A., Silva, L., Horwath, W., Gómez-Guerrero, A., Vargas-Hernández, J., Villanueva-Díaz, J., . . . SuárezEspinoza, J. (2019). Linking remote sensing and dendrochronology to quantify climate-induced shifts in high-elevation forests over space and time. Journal of Geophysical Research: Biogeosciences, 124(1), 166—183. doi: https://doi.org/10.1029/2018JG004687

Cronan, C. S. (2018). Microbial biogeochemistry. In C. S. Cronan (Ed.), Ecosystem biogeochemistry: Element cycling in the forest landscape (pp. 31—40). Springer. doi: https://doi.org/10.1007/978-3-319-66444-6

Dittman, J. A., Driscoll, C. T., Groffman, P. M., & Fahey, T. J. (2007). Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook Experimental Forest. Ecology, 88(5), 1153—1166. doi: https://doi.org/10.1890/06-0834

Enta, A., Hayashi, M., Caceres, M. L. L., Fujiyoshi, L., Yamanaka, T., Oikawa, A., & Seidel, F. (2019). Nitrogen resorption and fractionation during leaf senescence in typical tree species in Japan. Journal of Forestry Research, 31(6), 2053—2062. doi: https://doi.org/10.1007/s11676-019-01055-z

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied longitudinal analysis: USA: Wiley.

Fonseca, F., & Figueiredo, T. (2018). Carbon and nitrogen in forest floor and mineral soil under four forest species in the Mediterranean region. Spanish Journal of Soil Science, 8(1). doi: https://doi.org/10.3232/SJSS.2018.V8.N1.04

García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana) (5.a ed.). México: Instituto de Geografía, UNAM.

González-Zurdo, P., Escudero, A., & Mediavilla, S. (2015). N resorption efficiency and proficiency in response to winter cold in three evergreen species. Plant and Soil, 394(1-2), 87—98. doi: https://doi.org/10.1007/s11104-015-2509-2

He, M., Yan, Z., Cui, X., Gong, Y., Li, K., & Han, W. (2020). Scaling the leaf nutrient resorption efficiency: nitrogen vs phosphorus in global plants. Science of the Total Environment, 729, 138920. doi: https://doi.org/10.1016/j.scitotenv.2020.138920

Hong, J., Qin, X., Ma, X., Xu, X., & Wang, X. (2019). Seasonal shifting in the absorption pattern of alpine species for NO3− and NH4+ on the Tibetan Plateau. Biology and Fertility of Soils, 55(8), 801—811. doi: https://doi.org/10.1007/s00374-019-01392-5

Jiang, D., Geng, Q., Li, Q., Luo, Y., Vogel, J., Shi, Z., . . . Xu, X. (2019). Nitrogen and phosphorus resorption in planted forests worldwide. Forests, 10(3), 201. doi: https://doi.org/10.3390/f10030201

Johnson, D. W., & Turner, J. (2014). Nitrogen budgets of forest ecosystems: a review. Forest Ecology and Management, 318, 370—379. doi: https://doi.org/10.1016/j.foreco.2013.08.028

Kobe, R. K., Lepczyk, C. A., & Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86(10), 2780—2792. doi: https://doi.org/10.1890/04-1830

Liu, J., Gou, X., Gunina, A., Long, X. E., Zhang, F., & Zhang, J. (2020). Soil nitrogen pool drives plant tissue traits in alpine treeline ecotones. Forest Ecology and Management, 477, 118490. doi: https://doi.org/10.1016/j.foreco.2020.118490

Lopez-Escobar, N. F., Gómez-Guerrero, A., Velázquez-Martínez, A., Fierros-González, A. M., Castruita-Esparza, L. U., & VeraCastillo, J. A. (2018). Reservoirs and nutrient dynamics in two stands of Pinus montezumae Lamb. in Tlaxcala, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(1), 115—129. doi: https://doi.org/10.5154/r.rchscfa.2017.09.055

Marín, L. E., Escolero-Fuentes, O., & Trinidad-Santos, A. (2002). Physical geography, hydrogeology, and forest soils of the basin of Mexico. In M. E. Fenn. L. I. de Bauer, & T. Hernández-Tejeda (Ed.), Urban air pollution and forests (pp. 44—67). Springer.

Morgado-González, G., Gómez-Guerrero, A., Villanueva-Díaz, J., Terrazas, T., Ramírez-Herrera, C., & de la Rosa, P. H. (2019). Densidad de la madera de Pinus hartwegii Lind. en dos niveles altitudinales y de exposición. Agrociencia, 53(4), 645—660. Retrieved from https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1834

Norby, R. J., & Zak, D. R. (2011). Ecological lessons from freeair CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42(1),181—203. doi: https://doi.org/10.1146/annurev-ecolsys-102209-144647

Núñez-García, A., Gómez-Guerrero, A., Terrazas-Salgado, T. M., Vargas-Hernández, J. J., & Villanueva-Díaz, J. (2021). Análisis del incremento en área basal de Pinus hartwegiiLindl. a diferente altitud y exposición en el Cerro de Jocotitlán, Estado de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 27(1), 73—88. doi: https://doi.org/10.5154/r.rchscfa.2019.10.074

R Core Team. (2020). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Ramírez-Contreras, A., & Rodríguez-Trejo, D. (2009). Plantas nodriza en la reforestación con Pinus hartwegii Lindl. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15(1), 43—48. Retrieved from https://revistas.chapingo.mx/forestales/index.php?section=articles&subsec=issues&numero=39&articulo=511

Reed, S. C., Townsend, A. R., Davidson, E. A., & Cleveland, C. C. (2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196(1), 173—180. doi: https://doi.org/10.1111/j.1469-8137.2012.04249.x

Rothstein, D. E. (2009). Soil amino-acid availability across a temperate-forest fertility gradient. Biogeochemistry, 92(3), 201—215. doi: https://doi.org/10.1007/s10533-009-9284-1

Rowell, D. L. (2014). Soil science: Methods & applications. UK: Routledge.

Statistical Analysis System (SAS). (2011). SAS/ETS 9.3 User’s Guide. Cary, NC, USA: Author.

Schlesinger, W. H., & Bernhardt, E. S. (2020). Biogeochemistry: an analysis of global change (4th ed.). San Diego, California, USA: Academic Press.

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2000). Norma Oficial Mexicana NOM-021-SEMARNAT-2000 Que que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. México: Diario Oficial de la Federación.

Silva, L. C., Gómez-Guerrero, A., Doane, T. A., & Horwath, W. R. (2015). Isotopic and nutritional evidence for species-and site-specific responses to N deposition and elevated CO2 in temperate forests. Journal of Geophysical Research: Biogeosciences, 120(6), 1110—1123. doi: https://doi.org/10.1002/2014JG002865

Thomas, K. D., & Prescott, C. E. (2000). Nitrogen availability in forest floors of three tree species on the same site: the role of litter quality. Canadian Journal of Forest Research, 30(11), 1698—1706. doi: https://doi.org/10.1139/x00-101

Torres-Duque, F., Gómez-Guerrero, A., Trejo-Téllez, L. I., ReyesHernández, V. J., & Correa-Díaz, A. (2022). Estequiometría de la caída de acículas de pino en dos bosques alpinos de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 28(1), 57—74 doi: https://doi.org/10.5154/r.rchscfa.2020.12.077

Verchot, L., Holmes, Z., Mulon, L., Groffman, P., & Lovett, G. (2001). Gross vs net rates of N mineralization and nitrification as indicators of functional differences between forest types. Soil Biology and Biochemistry, 33(14), 1889—1901. doi: https://doi.org/10.1016/S0038-0717(01)00095-5

Zar, J. H. (2010). Biostatistical analysis: Pearson new international edition (5th ed.). New Jersey, USA: Prentice Hall.

Zhan-Yuan, Y., Fu-Sheng, C., De-Hui, Z., Qiong, Z., & GuangSheng, C. (2008). Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy soil. Pedosphere, 18(6), 775—784. doi: https://doi.org/10.1016/S1002-0160(08)60073-9

Zhang, J., Peng, C., Xue, W., Yang, B., Yang, Z., Niu, S., . . . Wang, M. (2020). Dynamics of soil water extractable organic carbon and inorganic nitrogen and their environmental controls in mountain forest and meadow ecosystems in China. CATENA, 187, 104338. doi: https://doi.org/10.1016/j.catena.2019.104338

Zhang, Z., Yuan, Y., Liu, Q., & Yin, H. (2019). Plant nitrogen acquisition from inorganic and organic sources via root and mycelia pathways in ectomycorrhizal alpine forests. Soil Biology and Biochemistry, 136, 107517. doi: https://doi.org/10.1016/j.soilbio.2019.06.013

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Autónoma Chapingo