Revista Chapingo Serie Ciencias Forestales y del Ambiente
Phenological variation and greening of the Monarch Butterfly Biosphere Reserve (2000-2019)
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Abies religiosa
temperate forest
climate change
leaf area index
growing season
time series

How to Cite

España-Boquera, M. L., Champo-Jiménez, O., & Uribe-Salas, M. D. (2023). Phenological variation and greening of the Monarch Butterfly Biosphere Reserve (2000-2019). Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(2), 207–223. https://doi.org/10.5154/r.rchscfa.2021.01.001

Abstract

Introduction: The Abies forest of the Monarch Butterfly Biosphere Reserve (MBBR) is a key ecosystem for the butterfly Danaus plexippus L. The study of this habitat is essential to understand the global effects of environmental transformation.
Objectives: To study the impact of climate change over the last 20 years (2000-2019) on the MBBR, to (1) describe variations in climate and phenology; (2) analyze the relationships between LAI (leaf area index) and climate; and (3) estimate greening
Materials and methods: Monthly mean temperature and precipitation values from the NASA Giovanni database and the Copernicus LAI series were analyzed. Using the TIMESAT algorithm, 11 phenological variables per pixel and year were determined and the annual spatial average of each one was calculated for each type of land cover (pine, oyamel, shrubs and crops) and the cumulative increase of the extended integral (greening).
Results and discussion: Mean temperature increased 0.87 °C in 2000-2019. Beginning, middle, and end of the season have occurred progressively earlier, and cumulative leaf area, as well as minimum and maximum LAI, have increased. Greening was recorded in 53.21 % of the MBBR and browning in 33.97 %.
Conclusion: The increase in mean temperature affects phenology of MBBR, causing longer growing seasons and net greening of the area.

https://doi.org/10.5154/r.rchscfa.2021.01.001
PDF

References

Arias-Maldonado, M. (2018). Antropoceno. La política en la era humana. España: Taurus Penguin Random House.

Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., …Smets, B. (2013). GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137, 299–309. doi: https://doi.org/10.1016/j.rse.2012.12.027

Bruce, E. M., Tyler, C. M., Shelly, C., & Mata, C. (2009). A comparative study of oak (Quercus, Fagaceae) seedling physiology during summer drought in southern California. American Journal of Botany, 96(4), 751–761. doi: https://doi.org/10.3732/ajb.0800247

Buitenwerf, R., Sandel, B., Normand, S., Mimet, A., & Svenning, J. C. (2018). Land surface greening suggests vigorous woody regrowth throughout European seminatural vegetation. Global Change Biology, 24(12), 5789–5801. doi: https://doi.org/10.1111/gcb.14451

Champo-Jiménez, O., Valderrama-Landeros, L., & EspañaBoquera, M. L. (2012). Pérdida de cobertura forestal en la reserva de la biosfera Mariposa Monarca, Michoacán, México (2006-2010). Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(2). doi: https://doi.org/10.5154/r.rchscfa.2010.09.074

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, …Myneni, R. B. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122–129. doi: https://doi.org/10.1038/s41893-019-0220-7

Cui, L., Wang, L., Singh, R. P., Lai, Z., Jiang, L., & Yao, R. (2018). Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environmental Science and Pollution Research, 25, 21867–21878. doi: https://doi.org/10.1007/s11356-018-2340-4

España-Boquera, M. L., Champo-Jiménez, O., & UribeSalas, M. D. (2019). Fenología de la Reserva Biósfera

Mariposa Monarca con series de índice de área foliar. Ecosistemas y Recursos Agropecuarios, 6(18), 435–449. doi: https://doi.org/10.19136/era.a6n18.1941

Forzieri, G., Alkama, R., Miralles, D. G., & Cescatti, A. (2017). Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356, 1180–1184. doi: https://doi.org/10.1126/science.aal1727

Forzieri, G., Alkama, R., Miralles, D. G., & Cescatti, A. (2018). Response to comment on “Satellites reveal contrasting responses of regional climate to the widespread greening of Earth”. Science, 360, 6394. doi: https://doi.org/10.1126/science.aap9664

Gao, X., Liang, S., & He, B. (2019). Detected global agricultural greening from satellite data. Agricultural and Forest Meteorology, 276–277, 107652. doi: https://doi.org/10.1016/j.agrformet.2019.107652

García-Mozo, H., Galán, C., Jato, V., Belmonte, J., Díaz de la Guardia, C., Fernández, D., …Domínguez-Vilches, E. (2006). Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine, 13, 209–224. http://www.aaem.pl/pdf90566-25112?filename=QUERCUS%20POLLEN%20SEASON.pdf

Giménez de Azcárate, J., Ramírez, M. I., & Pinto, M. (2003). Las comunidades vegetales de la Sierra de Angangueo (estados de Michoacán y México, México): Clasificación, composición y distribución. Lazaroa,24, 87–111. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=1028620

IPCC AR5 (2013). Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Retrieved from https://www.ipcc.ch/report/ar5/wg1/

Jönsson, P., & Eklundh, L. (2004). TIMESAT: A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8), 833–845. doi: https://doi.org/10.1016/j.cageo.2004.05.006

Leverkus, A. B., Jaramillo-López, P. F., Brower, L. P., Lindenmayer, D. B., & Williams, E. H. (2017). Mexico’s logging threatens butterflies. Science, 358, 1008. doi: https://doi.org/10.1126/science.aar3826

Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L., & Reich, P. B. (2020). Las respuestas fenológicas de los árboles templados y boreales al calentamiento dependen de las temperaturas ambientales de primavera, el hábito de las hojas y el rango geográfico. Proceedings of the National Academy of Sciences, 117(19), 10397-10405. doi: https://doi.org/10.1073/pnas.1917508117

Piao, S., Friedlingstein, P., Ciais, P., Zhou, L., & Chen, A. (2006). Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 33(23), L23402. doi: https://doi.org/10.1029/2006GL028205

Romero-Rangel, S., Rojas-Zenteno, E. C., & Rubio, L. L. (2014). Familia Fagaceae. In J. Rzedowski & G. Calderón de Rzedowski (Eds.), Flora del Bajío y de regiones adyacentes (1‒167). Pátzcuaro, México: Instituto de Ecología, A. C. doi: https://doi.org/10.21829/fb.64.2014.181

Seyednasrollah, B., Swensonb, J. J., Domec, J. C., & Clark, J. S. (2018). Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sensing of Environment, 209, 446–455. doi: https://doi.org/10.1016/j.rse.2018.02.059

Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A. K., Wang, T., Zurita-Milla, R., … Paganini, M. (2018). Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote Sensing of Environment, 215, 517–529. doi: https://doi.org/10.1016/j.rse.2018.03.014

Zeng, Z., Piao, S., Li, L., Zhou, L., Ciais, P., Wang, T., …Wang, Y. (2017). Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 7, 432–436. doi: https://doi.org/10.1038/nclimate3299

Zeng, Z., Peng, L., & Piao, S. (2018). Response of terrestrial evapotranspiration to Earth’s greening. Current Opinion in Environmental Sustainability, 33, 9–25. doi: https://doi.org/10.1016/j.cosust.2018.03.001

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Autónoma Chapingo