Revista Chapingo Serie Ciencias Forestales y del Ambiente
Fertilization of two genetic groups of Pinus patula Schiede ex Schltdl. & Cham. in a four-year progeny trial
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

controlled-release fertilizer
genotypes
forest nutrition
growth rate
foliar analysis

How to Cite

Velázquez-Castro, I. J., Aldrete, A., López-Upton, J., López-López, M. Á., & Etchevers-Barra, J. D. (2021). Fertilization of two genetic groups of Pinus patula Schiede ex Schltdl. & Cham. in a four-year progeny trial. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 28(1), 21–36. https://doi.org/10.5154/r.rchscfa.2020.08.049

Abstract

Introduction: Genetic improvement and nutritional management are used to increase productive capacity.
Objective: To analyze the effect of traditional and controlled-release fertilizers, as well as the way to define the doses (technically or empirically), on growth of 20 tree families of Pinus patula Schiede ex Schltdl. & Cham.
Materials and methods: Four fertilization treatments were applied: 1) control; 2) “technical”, based on foliar analysis; 3) controlled release (18-6-12 + 2CaO + 3.5 Mg + 2.1 Si + microelements); and 4) mixture of agricultural fertilizers in nutrient concentrations similar to the controlled[1]release treatment. Height, diameter, biomass index, number of whorls, leaf mass, and growth initiation and cessation were evaluated in a group of 10 superior and 10 inferior three-year old families in Chignahuapan, Puebla. Data were analyzed with the MIXED procedure of SAS.
Results and discussion: Trees showed no significant differences in growth, biomass production and growth initiation by fertilization effect, but showed significant differences by genetic quality (P ≤ 0.05). The genotype*fertilization interaction was significant; after one year of controlled[1]release fertilizer application, inferior genotypes had the highest values of relative rates of biomass production, diameter at root collar and height.
Conclusions: Controlled-release fertilizers at appropriate doses and environmental conditions are a viable option to promote growth of young P. patula trees in the field.

https://doi.org/10.5154/r.rchscfa.2020.08.049
PDF

References

Alcántar-González, G., & Sandoval-Villa, M. (1999). Manual de análisis químico de tejido vegetal: guía de muestreo, preparación, análisis e interpretación. Chapingo, México: Sociedad Mexicana de la Ciencia del Suelo, Universidad Autónoma Chapingo.

Ali, S., & Danafar, F. (2015). Controlled-release fertilizers: Advances and challenges. Life Science Journal, 12(11), 33–45. Retrieved from http://www.lifesciencesite.com/lsj/life121115/005_17565life121115_33_45.pdf

Álvarez, J., Rodríguez, J., & Suárez, D. (1999). Mejoramiento de la productividad de plantaciones de Pinus radiata D. Don, a través de un método racional de fertilización. Bosque, 20(1), 23–36. Retrieved from http://revistas.uach.cl/pdf/bosque/v20n1/art03.pdf

Binkley, D., Stape, J. L., & Ryan, M. G. (2004). Thinking about efficiency of resource use in forests. Forest Ecology and Management, 193(1–2), 5–16. doi: https://doi.org/10.1016/j.foreco.2004.01.019

Bustillos-Aguirre, C. V., Vargas-Hernández, J. J., LópezUpton, J., & Ramírez-Valverde, G. (2018). Repetibilidad de parámetros genéticos de las características de ramificación en progenies de Pinus patula. Madera y Bosques, 24(1), 1–10. doi: https://doi.org/10.21829/myb.2018.2411131

Chandra, M. S., Lal, M., Naresh, R. K., Yadav, S., Kumar, R., Kumar, R., … Lavanya, N. (2019). Role of polymer coated fertilizers (PCFS) an advance technology for improving nutrient use efficiency and crop productivity: A review. International Journal of Chemical Studies, 7(6), 2667–2679. Retrieved from http://www.chemijournal.com/archives/2019/vol7issue6/PartAR/7-6-475-496.pdf

Comisión Nacional Forestal (CONAFOR), & Colegio de Postgraduados (COLPOS). (2009). Situación actual y perspectivas de las plantaciones forestales comerciales en México. Zapopan, México: Comisión Nacional ForestalColegio de Postgraduados.

Cooke, J. E. K., Eriksson, M. E., & Junttila, O. (2012). The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant, Cell and Environment, 35(10), 1707–1728. doi: https://doi.org/10.1111/j.1365-3040.2012.02552.x

Dvorak, W. S., Hodge, G. R., Kietzka, J. E., Malan, F., Osorio, L. F., & Stanger, T. K. (2000). Pinus patula. In CAMCORE Cooperative (Ed.), Conservation & testing of tropical & subtropical forest tree species by the CAMCORE cooperative(pp. 148–173). Raleigh, USA: Carolina State University.

Fløistad, I. S. (2002). Effects of excessive nutrient supply and short day treatment on autumn frost hardiness and time of bud break in Picea abies seedlings. Scandinavian Journal of Forest Research, 17(4), 295–303. doi: https://doi.org/10.1080/02827580260138053

Gómez-Cárdenas, M., Vargas-Hernández, J. J., Jasso-Mata, J., Velázquez-Martínez, A., & Rodríguez-Franco, C. (1998). Patrón de crecimiento anual del brote terminal en árboles jóvenes de Pinus patula. Agrociencia, 32(4), 357–363. Retrieved from https://www.researchgate.net/publication/266391132

Hunt, R. (1990). Basic growth analysis. London, UK: Unwin Hyman.

Instituto Nacional de Estadística y Geografía (INEGI). (2013). Conjunto de datos perfiles de suelos. Escala 1:250 000 serie II (continuo nacional). Retrieved May 23, 2020 from https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707

Kozlowski, T. T. (1964). Shoot growth in woody plants. The Botanical Review, 30(3), 335–392. Retrieved from http://www.jstor.org/stable/4353695

Lázaro-Dzul, M. O., Velázquez-Mendoza, J., VargasHernández, J. J., Gómez-Guerrero, A., ÁlvarezSánchez, M. E., & López-López, M. A. (2012).

Fertilización con nitrógeno, fósforo y potasio en un latizal de Pinus patula Schl. et Cham. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(1), 33–42. doi: https://doi.org/10.5154/r.rchscfa.2011.01.001

Li, B., McKeand, S. E., & Allen, H. L. (1991). Genetic variation in nitrogen use efficiency of loblolly pine seedlings. Forest Science, 37(2), 613–626. Retrieved from https://www.researchgate.net/publication/233523956%0AGenetic

Louw, J. R., & Scholes, M. C. (2003). Foliar nutrient levels as indicators of site quality for Pinus patula in the Mpumalanga escarpment area. The Southern African Forestry Journal, 197(1), 21–30. doi: https://doi.org/10.1080/20702620.2003.10431718

Maliondo, S. M. S., Mtui, E. B., Chamshama, S. A. O., Nsolomo, V. R., Msanya, B. M., & Mhando, M. L. (2005). Early response of second-rotation Pinus patula stands to nitrogen and phosphate fertilizers at Sao Hill forest plantation, Tanzania. Journal of Tropical Forest Science, 17(1), 413–418. Retrieved from https://www.jstor.org/stable/23616528

Martins, P., Sampedro, L., Moreira, X., & Zas, R. (2009). Nutritional status and genetic variation in the response to nutrient availability in Pinus pinaster. A multisite field study in Northwest Spain. Forest Ecology and Management, 258(7), 1429–1436. doi: https://doi.org/10.1016/j.foreco.2009.06.041

Mavimbela, L. Z., Crous, J. W., Morris, A. R., & Chirwa, P. W. (2018). The importance of harvest residue and fertiliser on productivity of Pinus patula across various sites in their first, second and third rotations, at Usutu Swaziland. New Zealand Journal of Forestry Science, 48(5), 1–14. doi: https://doi.org/10.1186/s40490-018-0110-1

Munsell, J. F., & Fox, T. R. (2010). An analysis of the feasibility for increasing woody biomass production from pine plantations in the southern United States. Biomass and Bioenergy, 34(12), 1631–1642. doi: https://doi.org/10.1016/j.biombioe.2010.05.009

Pan, J., Jacobs, D. F., & Li, G. (2017). Combined effects of short-day treatment and fall fertilization on growth, nutrient status, and spring bud break of Pinus tabulaeformis seedlings. iForest, 10(1), 242–249. doi: https://doi.org/10.3832/ifor2178-009

Pérez-Soto, F., Figueroa-Hernández, E., García-Núñez, R. M., & Godínez-Montoya, L. (2017). Genética y fertilización en la producción agrícola. Texcoco, México: ECORFAN. Retrieved from https://www.ecorfan.org/handbooks/Ciencias de la Biologia Agronomia y Economia T-I/HCBAE_TI.pdf

Reyes-Millalón, J., Gerding, V., & Thiers-Espinoza, O. (2012). Fertilizantes de liberación controlada aplicados al establecimiento de Pinus radiata D. Don en Chile. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 18(3), 313–328. doi: https://doi.org/10.5154/r.rchscfa.2011.08.060

Sáenz-Romero, C., Beaulieu, J., & Rehfeldt, G. E. (2011). Variación genética altitudinal entre poblaciones de Pinus patula de Oaxaca, México, en cámaras de crecimiento simulando temperaturas de calentamiento global. Agrociencia, 45(3), 399–411. Retrieved from https://agrociencia-colpos.mx/index.php/agrociencia/article/view/887/887

Salaya-Domínguez, J. M., López-Upton, J., & VargasHernández, J. J. (2012). Variación genética y ambiental en dos ensayos de progenies de Pinus patula. Agrociencia, 46(5), 519–534. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952012000500009

Salazar-García, J. G., Vargas-Hernández, J. J., Jasso-Mata, J., Molina-Galán, J. D., Ramírez-Herrera, C., & LópezUpton, J. (1999). Variación en el patrón de crecimiento en altura de cuatro especies de Pinus en edades tempranas. Madera y Bosques, 5(2), 19–34. Retrieved from http://www.redalyc.org/articulo.oa?id=61750203

Sánchez-Parada, A., López-López, M. Á., Gómez-Guerrero, A., & Pérez-Suárez, M. (2018). Critical nutrient concentrations and DRIS norms for Pinus patula. Preprints, 1–13. doi: https://doi.org/10.20944/preprints201801.0011.v1

SAS Institute. (2015). The mixed procedure. SAS/STAT(R) 14.1 User’s Guide. Cary, USA: Author. Retrieved from https://support.sas.com/documentation/onlinedoc/stat/930/mixed.pdf

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2002). Norma Oficial Mexicana NOM021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. México: Diario Oficial de la Federación.

Štofko, P. (2010). Effects of slow-release fertilizers of Silvamix and Silvagen line on growth of a young spruce and larch forest plantation three years after application. Folia Forestalia Polonica, Series A, 52(1), 54–60. doi: https://doi.org/10.5281/zenodo.30866

Valencia-Manzo, S., & Vargas-Hernández, J. J. (2001). Correlaciones genéticas y selección simultánea del crecimiento y densidad de la madera en Pinus patula. Agrociencia, 35(1), 109–120. Retrieved from https://www.redalyc.org/articulo.oa?id=30235110

Vázquez-Cisneros, I., Prieto-Ruíz, J. A., López-López, M. A., Wehenkel, C., Domínguez-Calleros, C. P. A., & MuñozSáez, F. E. (2018). Growth and survival of a plantation of Pinus greggii Engelm. ex Parl. var. greggii under different fertilization treatments. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 24(2), 251–264. doi: https://doi.org/10.5154/r.rchscfa.2017.05.036

Vásquez-García, I., López-López, M. Á., Ángeles-Pérez, G., Trinidad-Santos, A., Jiménez-Casas, M., & AguilarBenítez, G. (2015). Aclareo y fertilización química en la productividad primaria neta de plantaciones de Pinus patula Schiede ex Schltdl. et Cham. Revista Mexicana de Ciencias Forestales, 6(31), 82–93. Retrieved from http://www.scielo.org.mx/pdf/remcf/v6n31/v6n31a7.pdf

Virginia Tech & USDA Forest Service. (2020). Research on forest climate change: Potential effects of global warming on forests and plant climate relationships in Western North America and Mexico. Retrieved May 31, 2020, from http://charcoal.cnre.vt.edu/climate/

Wells, C., & Allen, L. (1985). A loblolly pine management guide: When and where to apply fertilizer. Asheville, USA: US Department of Agriculture-Forest Service-Southern Forest Experiment Station. Retrieved from http://www.srs.fs.usda.gov/pubs/viewpub.php?index=921

Zas, R., Pichel, F., Martíns, P., & Fernández-López, J. (2006). Fertilization x genotype interaction in Pinus radiata open pollinated families planted in three locations in Galicia (NW Spain). New Forests, 32(3), 253–263. doi: https://doi.org/10.1007/s11056-006-9000-0

Zhang, Y., Zhou, Z., & Yang, Q. (2013). Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil, 364(1–2), 93–104. doi: https://doi.org/10.1007/s11104-012-1352-y

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Universidad Autónoma Chapingo