Revista Chapingo Serie Ciencias Forestales y del Ambiente
Seed production, dispersal and seed bank in Lupinus montanus Kunth at the upper limit of its altitudinal distribution in the Nevado de Toluca.
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Fabaceae
lupine
altitudinal migration
alpine zone
soil slope

How to Cite

Córdoba-Rodríguez, C.-R., Vargas-Hernández, J. J., Plascencia-Escalante, F. O., López-Upton, J., Pérez-Suárez, M., & Trejo-López, C. (2021). Seed production, dispersal and seed bank in Lupinus montanus Kunth at the upper limit of its altitudinal distribution in the Nevado de Toluca. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(2), 229–241. https://doi.org/10.5154/r.rchscfa.2020.06.045

##article.highlights##

  • Lupinus montanus produces over 5 500 seeds per plant in one reproductive cycle.
  • Seed production potential was positively associated with plant size.
  • The seed dispersal curve was adjusted to a negative exponential model.
  • Direction of soil slope had no impact on seed dispersal distance.
  • Most of the dispersed seeds (97 %) fell at a distance ≤2 m from the mother plant.

Abstract

Introduction: In response to climate change, plants can adapt, migrate or die; however, migration by natural dispersion of seed can be very slow. 
Objective: To determine productive potential, dispersal distance and seed bank of Lupinus montanus Kunth (lupine) at the upper limit (4 200 m) of its natural distribution at the “Nevado de Toluca” mountain. 
Materials and methods: The seed bank was estimated in an area of 1.88 m2. Three sampling sites were established with plants in reproductive stage (15 plants) isolated from other adult plants. Seed production was determined in traps placed at the four orientations of each plant and spatial pattern of dispersal was also determined. 
Results and discussion: Seedbank density was 4.26 seeds∙m-2 of soil. Lupinus montanus produced over 5 500 seeds per plant in one reproductive cycle; its seed potential was associated with plant height and number of stems. The number of seeds collected varied significantly (P < 0.0001) with respect to distance from the mother plant. The dispersion curve was adjusted (P < 0.01) to a negative exponential model (R2 = 0.849). Dispersal in the four orientations was symmetrical; 97 % of the seeds fell at a distance ≤2 m from the mother plant. 
Conclusions: Only 3.2 % of the seeds of L. montanus reached a distance greater than 2 m from the mother plant; however, dispersal is uniform in all orientations, therefore soil slope does not represent a limiting factor for the altitudinal migration of species.

https://doi.org/10.5154/r.rchscfa.2020.06.045
PDF

References

Abraham de Noir, F., Bravo, S., & Abdala, R. (2002). Mecanismos de dispersión de algunas especies de leñosas nativas del Chaco Occidental y Serrano. Quebracho, 9, 140‒150. Retrieved from https://www.researchgate.net/publication/237035441_Mecanismos_de_dispersion_de_algunas_especies_de_lenosas_nativas_del_Chaco_Occidental_y_Serrano

Acosta-Percástegui, J., & Rodríguez-Trejo, D. (2005). Factors affecting germination and pregerminative treatments of Lupinus montanus seeds. Interciencia, 30(9), 576‒579. Retrieved from https://www.redalyc.org/articulo.oa?id=339/33910811

Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95‒111. doi: https://doi.org/10.1111/j.1752-4571.2007.00013.x

Amico, G. C., & Aizen, M. A. (2005). Dispersión de semillas por aves en un bosque templado de Sudamérica austral: ¿Quién dispersa a quién? Ecología Austral, 15, 89‒100. Retrieved from https://bibliotecadigital.exactas.uba.ar/download/ecologiaaustral/ecologiaaustral_v015_n01_p089.pdf

Barchuk, A. H., Campos, E. B., Oviedo, C., & Díaz M. P. (2006). Supervivencia y crecimiento de plántulas de especies leñosas del Chaco Árido sometidas a remoción de la biomasa aérea. Ecología Austral, 16(1), 47‒61. Retrieved from https://www.researchgate.net/publication/262465213_Supervivencia_y_crecimiento_de_plantulas_de_especies_lenosas_del_Chaco_Arido_sometidas_a_remocion_de_la_biomasa_aerea

Bustamante, R. O. (1996). Depredación de semillas en bosques templados de Chile. En J. J. Armesto, C. Villagrán, & M. T. Arroyo (Eds.), Ecología de los bosques nativos de Chile (pp. 265‒278). Santiago de Chile, Chile: Editorial Universitaria.

Byars, S. G., Papst, W., & Hoffmann, A. A. (2007). Local adaptations and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution, 61(12), 2925‒2941. doi: https://doi.org/10.1111/j.1558-5646.2007.00248.x

Cabrera, H. M. (2002). Respuestas ecofisiológicas de plantas en ecosistemas de zonas con clima mediterráneo y ambientes de alta montaña. Revista Chilena de Historia Natural, 75(3), 625‒637. doi: https://doi.org/10.4067/S0716-078X2002000300013

De Souza-Maia, M., Maia, F. C., & Pérez, M. A. (2006). Soil seed banks. Agriscientia, 23(1), 33‒44. doi: https://doi.org/10.31047/1668.298x.v23.n1.2689

Dunn, D. B. (2001). Lupinus. En G. Calderón, & J. Rzedowski (Eds.), Flora fanerogámica del Valle de México (2.ª ed., pp. 326‒333). Pátzcuaro, México: Instituto de Ecología.

Escudero, A., García-Camacho, R., García-Fernández, A., Gavilán R. G., Giménez-Benavides L., Iriondo, J., …Pescador, D. S. (2012). Vulnerabilidad al cambio global en la alta montaña mediterránea. Ecosistemas, 21(3), 1‒10 doi: https://doi.org/10.7818/ECOS.2012.21-3.08

García, A. (1991). La dispersión de las semillas. Ciencias, 24, 3‒6. Retrieved from https://www.revistacienciasunam.com/es/172-revistas/revista-ciencias-24/1569-la-dispersi%C3%B3n-de-las-semillas.html

García, E. (1973). Modificaciones al sistema de clasificación de Köppen. México: Instituto de Geofísica, Universidad Nacional Autónoma de México.

Instituto Nacional de Estadística y Geografía (INEGI). (2000). Cartografía edafológica temática, escala 1:250,000. México: Autor.

Jump, S. A., & Peñuelas, J. (2005). Running to stand still: adaptation and the responses of plants to rapid climate change. Ecology Letters, 8(9), 1010‒1020. doi: https://doi.org/10.1111/j.1461-0248.2005.00796.x

Marañón, T. (2001). Ecología de banco de semillas y dinámica de comunidades mediterráneas. En R. R. Zamora, & F. I. Pugnaire de Iraola (Eds.), Ecosistemas mediterráneos. Análisis funcional (pp. 153‒181). España: CSIC/AEET.

McGraw, J. B., & Vavrek, M. C. (1989). The role of buried viable seeds in arctic and alpine plant communities. In M. A. Leck, V. T. Parker, & R. L. Simpson (Eds.), Ecology of soils seed banks (pp. 91‒105). San Diego, USA: Academic Press.

Nevado, B., Contreras-Ortiz, N., Hughes, C., & Filatov, A. D. (2018). Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. New Phytologist, 219(2), 779‒793. doi: https://doi.org/10.1111/nph.15243

O’Connor, T. G. O., & Pickett, G. A. (1992). The influence of grazing on seed production and seed banks of some African savanna grasslands. Journal of Applied Ecology, 29(1), 247–260. doi: https://doi.org/10.2307/2404367

Ooi, M. K. J. (2012). Seed bank persistence and climate change. Seed Science Research, 22(S1), S53‒S60. doi: https://doi.org/10.1017/S0960258511000407

Pablo-Pérez, M., Lagunes-Espinoza, L. C., López-Upton, J., Ramos-Juárez, J., & Aranda-Ibáñez, E. M. (2013). Morfometría, germinación y composición mineral de semillas de Lupinus silvestres. Bioagro, 25(2), 101‒108. Retrieved from http://ve.scielo.org/pdf/ba/v25n2/art03.pdf

Pearson, R. G. (2006). Climate change and the migration capacity of species. Trends in Ecology and Evolution, 21, 111‒113. doi: https://doi.org/10.1016/j.tree.2005.11.022

Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8(6), 531‒544. doi: https://doi.org/10.1046/j.1365-2486.2002.00489.x

Perea, R. (2012). Dispersión y predación de semillas por la fauna: Implicaciones en la regeneración forestal de bosques templados. Ecosistemas, 21(1-2), 224‒229. Retrieved from https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/368

Pérez-Cadavid, A., Rojas-Soto, O. R., & Bonilla-Moheno, M. (2018). Effect of seed ingestion by birds on the germination of understory species in cloud forest. Revista Mexicana de Biodiversidad, 89(4), 1167‒1175. doi: https://doi.org/10.22201/ib.20078706e.2018.4.2612

Pérez, M. E., & Santiago, T. E. (2001). Dinámica estacional del banco de semilla en una sabana en los Llanos Centro-Orientales de Venezuela. Biotropica, 33(3), 435‒446. doi: https://doi.org/10.1111/j.1744-7429.2001.tb00197.x

Rovere, E. A., & Premoli, C. A. (2005). Dispersión asimétrica de semillas de Embothrium coccineum (Proteaceae) en el bosque templado de Chiloé, Chile. Ecología Austral, 15, 1‒7. Retrieved from https://bibliotecadigital.exactas.uba.ar/download/ecologiaaustral/ecologiaaustral_v015_n01_p001.pdf

Ruiz, R. S., Gómez, R. M., & Lindig, C. R. (2010). Lluvia de semillas de Lupinus elegans Kunth. en un proyecto de restauración ecológica. Biológicas, 12(2), 72–74. Retrieved from https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=80

Sáenz-Romero, C., Lindig-Cisneros, R. A., Joyce, D. G., Beaulieu, St. Clair, J. B., & Jaquish, B. C. (2016). Assisted migration of forest populations for adapting trees to climate change. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 22(3), 303‒323. doi: https://doi.org/10.5154/r.rchscfa.2014.10.052

Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (2016). Programa de Manejo Área de Protección de Flora y Fauna Nevado de Toluca. Retrieved from https://simec.conanp.gob.mx/pdf_libro_pm/104_libro_pm.pdf

Soto-Correa, J. C., Lindig-Cisneros, R., & Sáenz-Romero, C. (2014). Migración asistida de Lupinus elegans Kunth en ensayos de jardín común en campo. Revista Fitotecnia Mexicana, 37(2), 107‒116. Retrieved from http://www.scielo.org.mx/pdf/rfm/v37n2/v37n2a2.pdf

Statistical Analysis System (SAS). (2013). The SAS system for windows, release V. 9.3. Cary, NC, USA: Author.

Tercero-Burcado, N., & Rovere, A. E. (2010). Patrones de dispersión de semillas y colonización de Misodendrum punctulatum (Misodendraceae) en un matorral postfuego de Nothofagus antarctica (Nothofagaceae) del noroeste de la Patagonia. Revista Chilena de Historia Natural, 83(3), 375‒386. doi: https://doi.org/10.4067/S0716-078X2010000300005

Thompson, K. & Fenner, M. (1992). The functional ecology of seed banks. In M. Fenner (Ed.), Seeds: the ecology of regeneration in plant communities (pp. 231–258). Wallingford, UK: CAB International.

Tognetti, M. P., Mazia, N., & Ibañez, G. (2019). Seed local adaptation and seedling plasticity account for Gleditsia triacanthos tree invasion across biomes. Annals of Botany 124(2), 307‒318. doi: https://doi.org/10.1093/aob/mcz077

Turner, K. G., Huang, D. I., Cronk, Q. C. B., & Rieseberg, L. H. (2017). Homogenization of populations in the wildflower, Texas bluebonnet (Lupinus texensis). Journal of Heredity 109(2), 152–161. doi: https://doi.org/10.1093/jhered/esx094

van Den, E. C. L., La Rue, E. A., & Emery, N. C. (2016). Oh, the places you’ll go! Understanding the evolutionary interplay between dispersal and habitat adaptation as a driver of plant distributions. American Journal of Botany, 103(12), 1–4. doi: https://doi.org/10.3732/ajb.1600312

Wang, B. C., & Smith, T. B. (2002). Closing the seed dispersal loop. Trends in Ecology & Evolution, 17(8), 379‒385. doi: https://doi.org/10.1016/S0169-5347(02)02541-7

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente