Revista Chapingo Serie Ciencias Forestales y del Ambiente
Chemical-mechanical damage caused by the brown-rot fungus Gloeophyllum trabeum (Pers.) Murrill on Pinus pseudostrobus Lindl. wood
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Wood damage
mechanical properties
sawn timber
xylophagous fungi
holocellulose

How to Cite

Días-Rivera, E., Montejo-Mayo, W., Martínez-Pacheco, M., Munro-Rojas, A., Ambriz-Parra, E., & Velázquez-Becerra, C. (2021). Chemical-mechanical damage caused by the brown-rot fungus Gloeophyllum trabeum (Pers.) Murrill on Pinus pseudostrobus Lindl. wood. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(2), 199–214. https://doi.org/10.5154/r.rchscfa.2020.05.033

##article.highlights##

  • Pinus pseudostrobus was in contact with Gloeophyllum trabeum for nine months.
  • The wood was resistant to degradation for G. trabeum, considering only weight loss.
  • G. trabeum affects the chemical and mechanical properties in wood.
  • The static bending and perpendicular compression to the grain suffer the greatest mechanical losses.

Abstract

Introduction: Wood is susceptible to be used as a carbon source by various fungal species damaging the wood, by exposing the wood to different environmental conditions. Its durability has been categorized according to its weight loss, without considering the decrease of the physicochemical and mechanical properties inherent to the weight loss.

Objective: To evaluate how the weight loss in Pinus pseudostrobus Lindl. wood exposed to brown-rot fungi Gloeophyllum trabeum (Pers.) Murrill affects the physicochemical and mechanical properties.

Materials and methods: Sawn timber pieces of P. pseudostrobus were inoculated with G. trabeum. Periodically (zero, three, six and nine months) and with the help of a universal testing machine, parallel compression (PC), static bending (SB) and perpendicular compression to the grain (CPG) were evaluated, and holocellulose, cellulose and lignin were quantified.

Results and discussion: After nine months of interaction with G. trabeum, the pieces of wood were resistant to degradation, considering only weight loss. However, the chemical-mechanical properties evaluated showed that the fungus made a thinning and breakdown of the tissue cells in the wood that induced a significant decrease in the values of SB (100 to 56 N∙mm -2 ) and CPG (42.2 to 20.2 N∙mm -2 ), which reduced its resistance to mechanical stress. Such damage is not reflected in the material’s aesthetic, which is alarming, since the common user of the pinewood could not notice the problem.

Conclusions: The wood that has been exposed to fungal degradation is significantly compromised in its mechanical properties, disabling it for construction, because the chemical properties show us that the fungus causes low resistance to mechanical stress by diminishing SB and CPG.

https://doi.org/10.5154/r.rchscfa.2020.05.033
PDF

References

Aguiar, A., Gavioli, D., & Ferraz, A. (2013). Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. International Biodeterioration & Biodegradation, 82, 187−191. doi: https://doi.org/10.1016/j.ibiod.2013.03.013

Álvarez, C., Reyes−Sosa, F. M., & Díez, B. (2016). Enzymatic hydrolysis of biomass from wood. Microbial Biotechnology, 9(2), 149−156. doi: https://doi.org/10.1111/1751-7915.12346

American Society for Testing Materials (1977). Standard method for determining alpha-cellulose in wood. ASTM D1103-60. Retrieved from https://www.astm.org/DATABASE.CART/WITHDRAWN/D1103.htm

American Society for Testing Materials (2005). Standard test method of accelerated laboratory test of natural decay resistance of woods. Standard Method. Retrieved from https://www.astm.org/DATABASE.CART/HISTORICAL/D2017-81R94E1.htm

Arantes, V., & Goodell, B. (2014). Current understanding of brown-rot fungal biodegradation mechanisms: a review. In T. P. Schultz, B. Goodell, & D. D. Nicholas (Eds.), Deterioration and protection of sustainable biomaterials (vol. 1158, pp. 3−21). USA: American Chemical Society. doi: https://doi.org/10.1021/bk-2014-1158.ch001

Bari, E., Nazarnezhad, N., Kazemi, S. M., Ghanbary, M. A. T., Mohebby, B., Schmidt, O., & Clausen, C. A. (2015). Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 104, 231−237. doi: https://doi.org/10.1016/j.ibiod.2015.03.033

Bernabé-Santiago, R., Ávila-Calderón, L. E. A., & RutiagaQuiñones, J. G. (2013). Componentes químicos de la madera de cinco especies de pino del municipio de Morelia, Michoacán. Madera y Bosques, 19(2), 21−35. Retrieved from http://www.scielo.org.mx/pdf/mb/

v19n2/v19n2a2.pdf

Cárdenas-Gutiérrez, M. Á., Pedraza-Bucio, F. E., LópezAlbarrán, P., Rutiaga-Quiñones, J. G., Correa-Méndez, F., Carrillo-Parra, A., & Herrera-Bucio, R. (2018). Chemical components of the branches of six hardwood species. Wood Research, 63(5), 795−807. Retrieved from http://www.woodresearch.sk/wr/201805/06.pdf

Chen, H., Ferrari, C., Angiuli, M., Yao, J., Raspi, C., & Bramanti, E. (2010). Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydrate Polymers, 82(3), 772−778. doi: https://doi.org/10.1016/j.carbpol.2010.05.052

Chow, Y. Y., & Ting, A. S. Y. (2019). Influence of fungal infection on plant tissues: FTIR detects compositional changes to plant cell walls. Fungal Ecology, 37, 38−47. doi https://doi.org/10.1016/j.funeco.2018.10.004

Curling, S. F., Clausen, C. A., & Winandy, J. E. (2002). Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown rot decay. Forest Products Journal, 52(7/8), 34−39. Retrieved from https://pubag.nal.usda.gov/download/29430/PDF

Daniel, G. (2016). Fungal degradation of wood cell walls. In Y. Kim, R. Funada, & A. P. Singh (Eds.), Secondary xylem biology. Origins, functions, and applications (pp. 131−167). Academic Press. doi: https://doi.org/10.1016/B978-0-12-802185-9.00008-5

Dashtban, M., Schraft, H., Syed, T. A., & Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology, 1(1), 36−50. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180040/pdf/ijbmb00010036.pdf

Donaldson, L., Radotić, K., Kalauzi, A., Djikanović, D., & Jeremić, M. (2010). Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. Journal of Structural Biology, 169(1), 106−115. doi: https://doi.org/10.1016/j.jsb.2009.09.006

Durmaz, S., Özgenç, Ö., Boyacı, İ. H., Yıldız, Ü. C., & Erişir, E. (2016). Examination of the chemical changes in spruce wood degraded by brown-rot fungi using FT-IR and FT-Raman spectroscopy. Vibrational Spectroscopy, 85, 202−207. doi: https://doi.org/10.1016/j.vibspec.2016.04.020

Green, B., Jones, P. D., Nicholas, D. D., Schimleck, L. R., & Shmulsky, R. (2011). Non-destructive assessment of Pinus spp. wafers subjected to Gloeophyllum trabeum in soil block decay tests by diffuse reflectance near infrared spectroscopy. Wood Science and Technology, 45(3), 583−595. doi: https://doi.org/10.1007/s00226-010-0368-9

Hastrup, A. C. S., Howell, C., Larsen, F. H., Sathitsuksanoh, N., Goodell, B., & Jellison, J. (2012). Differences in crystalline cellulose modification due to degradation by brown and white rot fungi. Fungal Biology, 116(10), 1052−1063. doi: https://doi.org/10.1016/j.funbio.2012.07.009

Hiscox, J., O’Leary, J., & Boddy, L. (2018). Fungus wars: basidiomycete battles in wood decay. Studies in Mycology, 89, 117−124. doi: https://doi.org/10.1016/j.simyco.2018.02.003

Hosseinpourpia, R., & Mai, C. (2016). Mode of action of brown rot decay resistance of thermally modified wood: resistance to Fenton’s reagent. Holzforschung, 70(7), 691−697. doi: https://doi.org/10.1515/hf-2015-0141

Hunt, C. G., Zelinka, S. L., Frihart, C. R., Lorenz, L., Yelle, D., Gleber, S. C., …Jakes, J. E. (2018). Acetylation increases relative humidity threshold for ion transport in wood cell walls–A means to understanding decay resistance. International Biodeterioration & Biodegradation, 133, 230−237. doi: https://doi.org/10.1016/j.ibiod.2018.06.014

International Organization for Standardization (ISO). (1975). Wood testing in compression perpendicular to grain, ISO 3132. Retrieved from https://www.iso.org/standard/8290.html

International Organization for Standardization (ISO). (1975). Wood determination of ultimate strength in static bending. ISO 3133. Retrieved from https://www.iso.org/standard/8291.html

International Organization for Standardization (ISO). (1975). Determination of ultimate tensile stress parallel to grain. ISO 3345. Retrieved from https://www.iso.org/standard/8629.html

Johnston, S. R., Boddy, L., & Weightman, A. J. (2016). Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology, 92(11), 1−11. doi: https://doi.org/10.1093/femsec/fiw179

Krah, F. S., Bässler, C., Heibl, C., Soghigian, J., Schaefer, H., & Hibbett, D. S. (2018). Evolutionary dynamics of host specialization in wood-decay fungi. BMC Evolutionary Biology, 18(1), 1−13. doi: https://doi.org/10.1186/s12862-018-1229-7

Krueger, M. C., Hofmann, U., Moeder, M., & Schlosser, D. (2015). Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry. PloS ONE, 10(7), e0131773. doi: https://doi.org/10.1371%2Fjournal.pone.0131773

Mantau, U., Mayr, M., Döring, P., Saal, U., Glasenapp, S., & Blanke, C. (2019). World markets for wood: Status and prospects. In R. Meyers (Ed.), Encyclopedia of sustainability science and technology. New York, USA: Springer. doi: https://doi.org/10.1007/978-1-4939-2493-6_990-1

Mejía-Díaz, L. A., & Rutiaga-Quiñones, J. G. (2008). Chemical composition of Schinus molle L. wood and kraft pulping process. Revista Mexicana de Ingeniería Química, 7(2), 145−149. Retrieved from https://www.redalyc.org/pdf/620/62011423006.pdf

Monrroy, M., Ortega, I., Ramírez, M., Baeza, J., & Freer, J. (2011). Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme and Microbial Technology, 49(5), 472−477. doi: https://doi.org/10.1016/j.enzmictec.2011.08.004

Ortiz, R., Jamet, A., Herrera, P., Vindigni, G., & Pereira, A. (2011). Influencia del deterioro incipiente producido por el hongo de pudrición parda Serpula lacrymans, sobre las propiedades mecánicas de compresión normal y paralela a la fibra en madera de Pinus radiata D. Don. Informes de la Construcción, 63(521), 69−74. doi: https://doi.org/10.3989/ic.09.072

Pandey, K. K., & Pitman, A. J. (2003). FTIR studies of the changes in wood chemistry following decay by brownrot and white-rot fungi. International Biodeterioration & Biodegradation, 52(3), 151−160. doi: https://doi.org/10.1016/S0964-8305(03)00052-0

Poletto, M., Zattera, A. J., & Santana, R. M. (2012). Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(S1), E337−E344. doi: https://doi.org/10.1002/app.36991

Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B., & Vakkilainen, E. (2019). Global biomass trade for energy—Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioproducts and Biorefining, 13(2), 371−387. doi: https://doi.org/10.1002/bbb.1858

Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D., …Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68(1), 333−359. doi: https://doi.org/10.1016/j.rser.2016.09.107

StatSoft Inc. (2004). STATISTICA software, kernel release version 7.0. Tulsa, Oklahoma, USA: Author.

Terho, M., Hantula, J., & Hallaksela, A. M. (2007). Occurrence and decay patterns of common wood−decay fungi in hazardous trees felled in the Helsinki City. Forest Pathology, 37(6), 420−432. doi: https://doi.org/10.1111/j.1439-0329.2007.00518.x

Traoré, M., Kaal, J., & Cortizas, A. M. (2016). Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 63−70. doi: https://doi.org/10.1016/j.saa.2015.07.108

Witomski, P., Olek, W., & Bonarski, J. T. (2016). Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Construction and Building Materials, 102, 162−166. doi: https://doi.org/10.1016/j.conbuildmat.2015.10.109

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Revista Chapingo Serie Ciencias Forestales y del Ambiente