Revista Chapingo Serie Ciencias Forestales y del Ambiente
Forest ecosystem services in the tropics: an imperfect assessment of their contribution to welfare, and environmental policy implications
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Climate-smart Agriculture
Natural capital
Land use
Forest Transition
Bootstrap method

How to Cite

López-Ramírez, M. A. (2020). Forest ecosystem services in the tropics: an imperfect assessment of their contribution to welfare, and environmental policy implications. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 89–107. https://doi.org/10.5154/r.rchscfa.2020.04.025

##article.highlights##

  • En general, la agricultura es más rentable que la silvicultura, lo que crea incentivos para deforestar.
  • Optimal land use indicates that 75 countries have forest superavit (13.2 Mkm 2 ).
  • Contributions from ecosystem services are dwarfed by agricultural land productivity.
  • In general, agriculture is more profitable than forestry, which creates incentives to deforest.

Abstract

Introduction: The specific relation between ecosystem services (ES), land use systems productivity and welfare is complex and poorly understood.
Objective: To analyze the relationship between natural capital and welfare in the Agriculture, Forestry and Other Land Use (AFOLU) sector to assess Ecosystem Services contribution to agriculture, forestry and fishing value added (GDP [Gross Domestic Product]) and analyze policy implications.
Materials and methods: Using land use allocation variables, forest transition model and land use GDP for 97 tropical countries, the production function of AFOLU sector was estimated using a linear regression model and a bootstrap method. The properties of the function were analyzed, and the optimal land allocation was calculated.
Results and discussion: There is a direct contribution and an indirect contribution from forest ecosystems to GDP. The direct effect is manifested through the partial elasticity of forestland (P < 0.05). The indirect effect is reflected through the production scale (P < 0.05). Partial elasticity of agriculture is significantly higher than partial elasticity of forestland (P < 0.05) and production scale increases as forestland is depleted (P < 0.05). In addition, optimal land use indicates that 75 countries have forest superavit (13.2 Mkm 2 ) and 22 forest deficit (1.5 Mkm 2 ).
Conclusions: Forest ecosystems in the AFOLU sector in the tropics produce ecosystem services for society. However, these contributions are dwarfed by agricultural land productivity.

https://doi.org/10.5154/r.rchscfa.2020.04.025
PDF

References

Barbier, E. B., Burgess, J. C., & Grainger, A. (2010). The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy, 27(2), 98–107. doi: https://doi.org/10.1016/j.landusepol.2009.02.001

Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., … Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28(A), 1–16. doi: https://doi.org/10.1016/j.ecoser.2017.09.008

Daw, T. M., Hicks, C. C., Brown, K., Chaigneau, T., Januchowski-Hartley, F. A., Cheung, W. W. L., … McClanahan, T. R. (2016). Elasticity in ecosystem services: Exploring the variable relationship between ecosystems and human well-being. Ecology and Society, 21(2), 11. doi: https://doi.org/10.5751/ES-08173-210211

Di Gregorio, M., Nurrochmat, D. R., Paavola, J., Sari, I. M., Fatorelli, L., Pramova, E., … Kusumadewi, S. D. (2017). Climate policy integration in the land use sector: Mitigation, adaptation and sustainable development linkages. Environmental Science & Policy, 67, 35–43. doi: https://doi.org/10.1016/j.envsci.2016.11.004

Duguma, L. A., Minang, P. A., & van Noordwijk, M. (2014). Climate change mitigation and adaptation in the land use sector: From complementarity to synergy. Environmental Management, 54(3), 420–432. doi: https://doi.org/10.1007/s00267-014-0331-x

Efron, B. (1979). Bootstrap methods: another look at the Jackknife. The Annals of Statistics, 7(1), 1–26. doi: https://doi.org/10.1214/aos/1176344552

Efron, B., & Hastie, T. (2016). Computer age statistical inference: Algorithms, evidence, and data science. USA: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781316576533

Food and Agriculture Organization (FAO). (2017). Climate smart agriculture sourcebook (2nd ed.). Italy: Author. Retrieved from http://www.fao.org/climate-smart-agriculture-sourcebook/en/

Giannetti, B. F., Agostinho, F., Almeida, C. M. V. B., & Huisingh, D. (2015). A review of limitations of GDP and alternative indices to monitor human wellbeing and to manage eco-system functionality. Journal of Cleaner Production, 87, 11–25. doi: https://doi.org/10.1016/j.jclepro.2014.10.051

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., … Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818. doi: https://doi.org/10.1126/science.1185383

Gujarati, D. N. (2003). Basic econometrics (4th ed.). Portugal: Elsevier.

Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., … Wollenberg, E. (2014). Climate-Smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters, 7(2), 77–90. doi: https://doi.org/10.1111/conl.12066

HLPE. (2017). Sustainable forestry for food security and nutrition: A report by the High Level Panel of Experts on Food Security and Nutrition. Italy: FAO. Retrieved from http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-11_EN.pdf

Hosonuma, N., Herold, M., de Sy, V., de Fries, R. S., Brockhaus, M., Verchot, L., … Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7(4), 1‒12. doi: https://doi.org/10.1088/1748-9326/7/4/044009

Kaimowitz, D., & Angelsen, A. (1998). Economic models of tropical deforestation: A review. Bogor, Indonesia: CIFOR.

Kubiszewski, I., Costanza, R., Franco, C., Lawn, P., Talberth, J., Jackson, T., & Aylmer, C. (2013). Beyond GDP: Measuring and achieving global genuine progress. Ecological Economics, 93, 57–68. doi: https://doi.org/10.1016/j.ecolecon.2013.04.019

Locatelli, B., Lavorel, S., Sloan, S., Tappeiner, U., & Geneletti, D. (2017). Characteristic trajectories of ecosystem services in mountains. Frontiers in Ecology and the Environment, 15(3), 150–159. doi: https://doi.org/10.1002/fee.1470

Lopez, M. (2016). When does the integration of mitigation and adaptation in the land use sector actually makes sense? Ekonomia, 46, 101–119. doi: https://doi.org/10.17451/eko/46/2016/247

Lopez, M. (2019). Climate policy integration in a land use system with ecological thresholds. Economic and Evironmental Studies, 19(1), 49. Retrieved from https://czasopisma.uni.opole.pl/index.php/ees/article/view/301

Mbow, C., & Rosenzweig, C. (2019). Food security. In The Intergovernmental Panel on Climate Change (IPCC) (Ed.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (pp. 1‒200). Retrieved from https://www.ipcc.ch/srccl-report-download-page/

Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Synthesis: A report of the Millennium Ecosystem Assessment. USA: Island Press. Retrieved from https://www.millenniumassessment.org/documents/document.356.aspx.pdf

R Core Team. (2019). R: A Language and Environment for Statistical Computing. Retrieved from https://www.R-project.org/

Reed, J., van Vianen, J., Foli, S., Clendenning, J., Yang, K., MacDonald, M., … Sunderland, T. (2017). Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics. Forest Policy and Economics, 84, 62–71. doi: https://doi.org/10.1016/j.forpol.2017.01.012

Sharma, R., Rimal, B., Baral, H., Nehren, U., Paudyal, K., Sharma, S., … Kandel, P. (2019). Impact of land cover change on ecosystem services in a tropical forested landscape. Resources, 8(1), 18. doi: https://doi.org/10.3390/resources8010018

Sillabutra, J., Kitidamrongsuk, P., Viwatwongkasem, C., Ujeh, C., Sae-tang, S., & Donjdee, K. (2016). Bootstrapping with R to make generalized inference for regression model. Procedia Computer Science, 86, 228–231. doi: https://doi.org/10.1016/j.procs.2016.05.103

Sy, V. D., Herold, M., Achard, F., Avitabile, V., Baccini, A., Carter, S., …Verchot, L. (2019). Tropical deforestation drivers and associated carbon emission factors derived from remote sensing data. Environmental Research Letters, 14(9), 094022. doi: https://doi.org/10.1088/1748-9326/ab3dc6

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(1), 1–23. doi: https://doi.org/10.18637/jss.v059.i10

Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: A grammar of data manipulation (Version R package version 0.8.3). Retrieved from https://CRAN.R-project.org/package=dplyr

The World Bank. (2019). World Bank Open Data. Retrieved August 29, 2019, from https://data.worldbank.org/

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente