Revista Chapingo Serie Ciencias Forestales y del Ambiente
Dendrogeomorphological potential of Pinus ponderosa Douglas ex C. Lawson for the reconstruction of flash floods in Los Picos de Davis, Coahuila
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

growth rings
impact scars
growth suppression
hurricanes
precipitation

How to Cite

Sánchez-Asunción, W. ., Cerano-Paredes, J., Franco-Ramos, O., Cornejo-Oviedo, E. ., Villanueva-Díaz, J. ., Flores-López, C. ., & Garza-Martínez, M. . (2020). Dendrogeomorphological potential of Pinus ponderosa Douglas ex C. Lawson for the reconstruction of flash floods in Los Picos de Davis, Coahuila. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 26(3), 451–467. https://doi.org/10.5154/r.rchscfa.2020.02.006

##article.highlights##

  • A total of ten flash floods were reconstructed from evidence of disturbances in Pinus ponderosa.
  • The most common tree-ring disturbances were scars (72 %) and growth suppression (20 %).
  • There is synchrony between geomorphological processes and hydrometeorological phenomena.
  • Hurricanes
  • P. ponderosa has the potential to reconstruct the frequency and distribution of geomorphological processes.

Abstract

Introduction: Geomorphological processes, such as flash floods, affect the natural growth of trees. From the dating of disturbances in growth rings, historical events useful for the prevention and mitigation of natural hazards were reconstructed.
Objectives: To determine the dendrogeomorphological potential of Pinus ponderosa Douglas ex C. Lawson to date and reconstruct flash floods in Los Picos de Davis, Coahuila.
Materials and methods: Samples were collected from 19 dead and living trees with evidence of disturbance (impact scars, growth suppression and compression wood). The samples were prepared, dated and analyzed based on dendrogeomorphological techniques. The reconstructed flash floods were related to historical climate information from hurricanes, tropical cyclones and precipitation.
Results and discussion: We were able to date 68 % of the samples with evidence of disturbance; the correlation between growth series was significant (r = 0.403; P < 0.001). The most common anomalies were in the form of scars (72 %), growth suppression (20 %) and compression wood (8 %). Ten flash floods were reconstructed. The causative processes were flash floods, caused by extreme hydrometeorological phenomena, including hurricanes “Alex” in 2010, “Dolly” in 2008 and “Claudette” in 2003. There is synchrony between geomorphological processes and hydrometeorological phenomena.
Conclusions: P. ponderosa ring disturbances are useful to reconstruct the frequency and distribution of geomorphological processes.

https://doi.org/10.5154/r.rchscfa.2020.02.006
PDF

References

Ballesteros-Cánovas, J. A., Czajka, B., Janecka, K., Lempa, M., Kaczka, R. J., & Stoffe, M. (2015). Flash floods in the Tatra Mountain streams: Frequency and triggers. Science of the Total Environment, 511, 639–648. doi: https://doi.org/10.1016/j.scitotenv.2014.12.081

Ballesteros-Cánovas, J. A., Eguibar, M., Bodoque, J. M., Díez-Herrero, A., Stoffel, M., & Gutiérrez-Pérez, I. (2011). Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic paleostage indicators. Hydrological Processes, 25(6), 970–979. doi: https://doi.org/10.1002/hyp.7888

Ballesteros-Cánovas, J. A., Stoffel, M., & Bodoque, J. M. (2010). Changes in wood anatomy in tree rings of Pinus pinaster Ait. following wounding by flash floods. Tree-RingResearch,66(2), 93–103. Retrieved from https://doc.rero.ch/record/18328/files/hit_cwa.pdf

Ballesteros-Cánovas, J. A., Stoffel, M., Spyt, B., Janecka, K., Kaczka, R. J., &Lempa, M. (2016). Paleoflood discharge reconstruction in Tatra Mountain streams. Geomorphology, 272, 92–101. doi: https://doi.org/10.1016/j.geomorph.2015.12.004

Ballesteros-Cánovas, J. A., Stoffel, M., St George, S., &Hirschboeck, K. (2015). A review of flood records from tree rings. Progress in Physical Geography: Earth and Environment, 39(6), 794–816, doi: https://doi.org/10.1177/0309133315608758

Bodoque, J. M., Díez-Herrero, A., Eguibar, M. A., Benito, G., Ruiz-Villanueva, V., & Ballesteros-Cánovas, J. A. (2015). Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds—A review. Journal of Hydrology,529(2), 449–467.doi: https://doi.org/10.1016/j.jhydrol.2014.12.004

Bollschweiler, M., Stoffel, M., & Vázquez-Selem, L. (2010) Tree-ring reconstruction of past lahar activity at Popocatepetl volcano, México. The Holocene, 20(2), 265–274. doi: https://doi.org/10.1177/0959683609350394

Borga, M., Stoffel, M., Marchi, L., Marra, F., & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. Journal of Hydrology, 518, 194–205.doi: https://doi.org/10.1016/j.jhydrol.2014.05.022

Bravo, C. (2010). Reseña de la depresión tropical DOS del Océano Atlántico. Retrieved from https://smn.cna.gob.mx/es/ciclones-tropicales/informacion-historica

Callabam, R. Z. (2015). Pinus ponderosa: A taxonomic review with five subspecies in the United States. USA: CreateSpace Independent Publishing Platform.

Casteller, A., Stoffel, M., Crespo, S., Villalba, R., Corona, C., & Bianchie, E. (2015). Dendrogeomorphic reconstruction of flash floods in the Patagonian Andes. Geomorphology, 228(1), 116–123. doi: https://doi.org/10.1016/j.geomorph.2014.08.022

Dieterich, J.H., & Swetnam, T.W. (1984). Dendrochronology of a fire-scarred ponderosa pine. Forest Science, 30(1), 238–247. Retrieved from https://www.researchgate.net/publication/228332972_Dendrochronology_of_fire-scarred_ponderosa_pine

Diez-Herrero, A., Ballesteros, J. A., Bodoque, J. M., Eguíbar, M. A., Fernández, J. A., Génova, M. M.,…Stoffel, M. (2007). Mejoras en la estimación de la frecuencia y magnitud de avenidas torrenciales mediante técnicas dendrogeomorfológicas. Boletín Geológico y Minero, 118(4), 789–802. Retrieved from http://www.igme.es/boletin/2007/118_4.htm

Farjon, A., Pérez-de la Rosa, J. A., & Styles, T. B. (1997). A field guide to the pines of Mexico and Central America. USA: Royal Botanic Gardens, Kew.

Franco-Ramos, O., Castillo, M., & Muñoz-Salinas, E. (2016). Using tree-ring analysis to evaluate the intra-eruptive lahar activity in the Nexpayantla Gorge, Popocatépetl Volcano (Central Mexico). CATENA, 147, 205–215. doi: https://doi.org/10.1016/j.catena.2016.06.045

Franco-Ramos, O., Stoffel, M., & Ballesteros-Cánovas, J. A. (2019a). Reconstruction of debris-flow activity in a temperate mountain forest catchment of central Mexico. Journal of Mountains Science,16(9), 2096–2109. doi: https://doi.org/10.1007/s11629-019-5496-6

Franco-Ramos, O., Stoffel, M., Vázquez-Selem, L., & Capra, L. (2013). Spatiotemporal reconstruction of lahars on the southern slopes of Colima volcano, Mexico-A dendrogeomorphic approach. Journal of Volcanology and Geothermal Research, 267, 30–38. doi: https://doi.org/10.1016/j.jvolgeores.2013.09.011

Franco-Ramos, O., Vázquez-Selem, L., Stoffel, M., Cerano-Paredes, J., & Villanueva-Díaz, J. (2019b). Tree-rings based analysis of the 2001 pyroclastic flow and post-eruptive tree colonization on Popocatépetl volcano, Mexico. CATENA, 179, 149–159. doi: https://doi.org/10.1016/j.catena.2019.04.004

Franco-Ramos, O., Vázquez-Selem, L., Stoffel, M., & Villanueva-Díaz, J. (2018). Potencial dendrogeomorfológico de coníferas en volcanes del centro de México. Bosque, 39(2), 191–204. doi: https://doi.org/10.4067/S0717-92002018000200191

Garrote, J., Díez-Herrero, A., Génova, M., Bodoque, J. M., Perucha, M. A., & Mayer, P. L. (2018). Improving flood maps in ungauged fluvial basins with dendrogeomorphological data. An example from the Caldera de Taburiente National Park (Canary Islands, Spain). Geosciences, 8(8), 300. doi: https://doi.org/10.3390/geosciences8080300

Gottesfeld, A. S. (1996). British Columbia flood scars: maximum flood-stage indicator. Geomorphology,14(4), 319–325. doi: https://doi.org/10.1016/0169-555X(95)00045-7

Hernández, A., & Bravo, C. (2008). Reseña del huracán “DOLLY”. Retrieved fromhttps://smn.conagua.gob.mx/tools/DATA/Ciclones%20Tropicales/Ciclones/2008-Dolly.pdf

Hernández, A., & Bravo, C. (2010). Reseña del huracán “Alex” del Océano Atlántico. Retrieved from http://smn.conagua.gob.mx/tools/DATA/Ciclones%20Tropicales/Ciclones/2010-Alex.pdf

Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69–78. Retrieved from https://repository.arizona.edu/bitstream/handle/10150/261223/trb-43-069-078.pdf

Instituto Nacional de Estadística y Geografía (INEGI). (2018). Marco geoestadístico municipal 2018. Retrieved from https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463674658

Instituto Nacional de Estadística y Geografía (INEGI). (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, Múzquiz, Coahuila de Zaragoza. Clave geoestadística 05020. Retrieved fromhttp://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/05/05020.pdf

Instituto Nacional de Estadística y Geografía (INEGI). (2017). Carta de datos topográficos H13D59 (Coahuila de Zaragoza). Escala 1:50 000, serie III. México: Author.

Kogelnig-Mayer, B., Stoffel, M., Schneuwly-Bollschweiler, M., Hübl, J., & Rudolf-Miklau, F. (2011). Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity. Arctic, Antarctic, and Alpine Research, 43(4), 649–658. doi: https://doi.org/10.1657/1938-4246-43.4.649

Miranda, R., Puy, M. J., & Martínez, J. J. (2007). El árbol: fuente de información de las ciencias de la tierra. Elementos: Ciencia y Cultura, 14(67), 41–43. Retrieved from https://www.redalyc.org/pdf/294/29406708.pdf

Muñoz-Salinas, E., & Castillo, M. (2015). Streamflow and sediment load assessment from 1950 to 2006 in the Usumacinta and Grijalva Rivers (Southern Mexico) and the influence of ENSO. CATENA, 127, 270–278. doi: https://doi.org/10.1016/j.catena.2015.01.007

Quesada-Román, A., Ballesteros-Cánovas, J. A. Granados, S., Birkel, C., & Stoffel, M. (2020). Dendrogeomorphic reconstruction of floods in a dynamic tropical river. Geormophology, 352,107133.doi: https://doi.org/10.1016/j.geomorph.2020.107133

Robinson, W. J., & Evans, R. (1980). A microcomputer-based tree-ring measuring system. Tree-Ring Bulletin, 40, 59–64. Retrieved from https://repository.arizona.edu/bitstream/handle/10150/260443/trb-40-059-064.pdf?sequence=1&isAllowed=y

Roca, M., Martín-Vide, J. P., & Moreta, P. J. M. (2008). Modelling a torrential event in a river confluence. Journal of Hydrology, 364(3-4), 207–215. doi: https://doi.org/10.1016/j.jhydrol.2008.10.020

Schweingruber, F. H., Eckstein, D., Serre-Bachet, F., & IndBrfu, O. U. (1990). Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8, 9–38. Retrieved from https://www.naturfagsenteret.no/c1761334/binfil/download2.php?tid=1856970

Shroder, J. (1978). Dendrogeomorphological analysis of mass movement on table cliffs plateau, UTA. Quaternary Research, 9(2), 168–185. doi: https://doi.org/10.1016/0033-5894(78)90065-0

Stoffel, M., Bollschweiler, M., Butler, D. R., & Luckman, B. H. (2010). Tree rings and natural hazards: a state-of-art. Netherlands: Springer. doi: https://doi.org/10.1007/978-90-481-8736-2

Stoffel, M., & Corona, C. (2014). Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Research, 70(1), 3–20. Retrieved from https://repository.arizona.edu/bitstream/handle/10150/630491/StoffelCoronaTRR70-1-2014.pdf?sequence=1

Stokes, M. A., & Smiley, T. L. (1996). An introduction to the tree-ring dating.USA: The University of Arizona Press.

Terán, C. A. R. (2010). Escenarios de lluvia en México. Tesis doctoral, CIEMAD-IPN, Ciudad de México, México. Retrieved from https://tesis.ipn.mx/handle/123456789/23294

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente