Revista Chapingo Serie Ciencias Forestales y del Ambiente
Estimation and spatial analysis of aerial biomass and carbon capture in native forests in the south of Chile: county of Valdivia
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Keywords

Forest fragmentation
Getis-Ord statistic
polygon grouping
Evergreen
Nothofagus obliqua

How to Cite

Vergara-Díaz, G., & Herrera-Machuca, M. A. (2020). Estimation and spatial analysis of aerial biomass and carbon capture in native forests in the south of Chile: county of Valdivia. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 27(1), 53–71. https://doi.org/10.5154/r.rchscfa.2020.01.002

##article.highlights##

  • The total carbon content in aerial biomass was estimated at 599.6 Mg C·ha - 1
  • Carbon was concentrated in three forest types, Evergreen being the most important (63.3 %).
  • The most abundant species was Nothofagus obliqua (Mirb.) Oerst. (18.34 %).
  • The carbon polygons had a grouped spatial distribution in areas with forest reserves.
  • The spatial dependence was related to the physiographic characteristics of the study area.

Abstract

Introduction: Native forest reserves in southern Chile are the largest carbon sinks in the country, but the amount and level of grouping of the polygons that form these coverages is unknown.
Objective: to estimate aerial biomass (AB) and carbon content in native forests in the county of Valdivia, Los Rios region, as well as the degree of grouping of polygons containing carbon in aerial biomass.
Materials and methods: 21 land plots of 50 x 10 m were installed. Tree species were identified, and their diameter and height were measured. The AB was calculated using allometric equations, and the carbon content was calculated relating the AB to the factor 0.5. The degree of grouping of polygons with carbon content was calculated using the Getis-Ord G statistic.
Results and discussion: The total carbon content in AB was estimated at 599.6 Mg C·ha -1 . Carbon is concentrated in three forest types, Evergreen being the most important (63.3 %). The most abundant species was Nothofagus obliqua (Mirb.) Oerst. (18.34 %). There is a clustered spatial dependence on carbon-containing polygons in areas with forest reserves; the rest of the territory showed random distribution. Spatial dependence is related to the physiographic characteristics of the study area.
Conclusions: The use of allometric functions for the estimation of aerial biomass and factors to obtain the carbon content is a valid methodology. The carbon polygons of the native forests in Valdivia have grouped spatial distribution.

https://doi.org/10.5154/r.rchscfa.2020.01.002
PDF

References

Aguayo, M., Pauchard, A., Azócar, G., & Parra, O. (2009). Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: Entendiendo la dinámica espacial y temporal del paisaje. Revista Chilena de Historia Natural, 82(3), 361‒374. doi: https://doi.org/10.4067/S0716-078X2009000300004

Altamirano, A., & Lara, A. (2010). Deforestación en ecosistemas templados de la precordillera andina del centro-sur de Chile. Bosque (Valdivia), 31(1), 53‒64. doi: https://doi.org/10.4067/S0717-92002010000100007

Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: an introduction to spatial data analysis. Geographical Analysis, 38(1), 5‒22. doi: https://doi.org/10.1111/j.0016-7363.2005.00671.x

Bahamondez, A., Rivas, E., Roman, B., Lozada, P., Sartori, A., Briceño, N., & Moraga, J. (2016). Bosque nativo, comunidades y cambio climático. Retrieved from https://bosquenativo.cl/wp-content/uploads/2017/01/2016_08_-libro_cambio_climatico.pdf

Canadell, J., & Raupach, M. (2008). Managing forests for climate change mitigation. Science, 320(5882), 1456‒1457. doi: https://doi.org/10.1126/science.1155458

Corporación Nacional Forestal (CONAF). (2008). Catastro de uso del suelo y vegetación. Monitoreo y actualización Región de los Ríos 1998-2006. Santiago, Chile: Ministerio de Agricultura-CONAF.

Corporación Nacional Forestal (CONAF). (2009). Ley sobre recuperación del bosque nativo y fomento forestal y reglamentos. Retrieved from http://www.conaf.cl/wp-content/files_mf/1368741650LibroLey_Bosque_NativoReglamentos.pdf

Corporación Nacional Forestal (CONAF). (2014). Monitoreo de los cambios, corrección cartográfica y actualización del catastro de los recursos vegetacionales nativos de la región de Los Ríos. Retrieved from biblioteca.digital.gob.cl/bitstream/handle/123456789/2340/INFORME_FINAL_LOS_RIOS.pdf?sequence=1&isAllowed=y

Corporación Nacional Forestal (CONAF) & Comisión Nacional del Medio Ambiente (CONAMA). (1999). Catastro y evaluación de los recursos vegetacionales nativos de Chile. Retrieved from http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/10656/CONAF_BD_21.pdf?sequence=1&isAllowed=y

Echeverría, C., Coomes, D., Salas, J., Rey-Benayas, J., Lara, A., & Newton, A. (2006). Rapid deforestation and fragmentation of Chilean temperate forests. Biological Conservation, 130(4), 481‒494. doi: https://doi.org/10.1016/j.biocon.2006.01.017

Echeverría, C., Newton, A., Nahuelhual, L., Coomes, D., & Rey-Benayas, J. (2012). How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography, 32(2), 822‒831. doi: https://doi.org/10.1016/j.apgeog.2011.08.014

Environmental Systems Research Institute (ESRI). (2012). ArcMap 10.1. ArcGIS Resource Center. Desktop 10. Redlands, CA, USA: Author. Retrieved from http://resources.arcgis.com/es/help/getting-started/articles/026n00000012000000.htm

Etienne, M., & Prado, C. (1982). Descripción de la vegetación mediante la Carta de Ocupación de Tierras. Modificado de Centre d'Etudes Phytosociologiques et Ecologiques Louis Emberger / Centre National de la Recherche Scientifique, France. Chile: Universidad de Chile.

Federici, S., Tubiello, F., Salvatore, M., Jacobs, H., & Schmidhuber, J. (2015). New estimates of CO2 forest emissions and removals: 1990–2015. Forest Ecology and Management, 352, 89‒98. doi: https://doi.org/10.1016/j.foreco.2015.04.022

Fonseca, W. (2017). Revisión de métodos para el monitoreo de biomasa y carbono vegetal en ecosistemas forestales tropicales. Revista de Ciencias Ambientales, 51(2), 91‒109. doi: https://doi.org/10.15359/rca.51-2.5

Food and Agriculture Organization (FAO). (2016). Global Forest Resources Assessment 2015. How are the world’s forests changing? (2nd. ed.). Italy: Author. Retrieved from http://www.fao.org/3/a-i4793e.pdf

Gayoso, J., & Guerra, J. (2005). Contenido de carbono en la biomasa aérea de bosques nativos en Chile. Bosque (Valdivia), 26(2), 33‒38. doi: https://doi.org/10.4067/S0717-92002005000200005

Grafton, R., Nelson, H. W., Lambie, N. R., & Wyrwoll, P. R. (2012). A dictionary of climate change and the environment. UK: Edward Elgar Publishing Limited.

Intergovernmental Panel on Climate Change (IPCC). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change IPCC. Geneva, Switzerland: Author. Retrieved from https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf

Lara, A., Solari, M., Prieto, M., & Peña, M. (2012). Reconstrucción de la cobertura de la vegetación y uso del suelo hacia 1550 y sus cambios a 2007 en la ecorregión de los bosques valdivianos lluviosos de Chile (35° - 43° 30´ S). Bosque (Valdivia), 33(1), 13‒23. doi: https://doi.org/10.4067/S0717-92002012000100002

McRoberts, R., Tomppo, E., & Czaplewski, R. (1992). Diseños de muestreo de las evaluaciones forestales nacionales. In FAO (Ed.), Antología de conocimiento para la evaluación de los recursos forestales nacionales (pp. 1‒21). Roma, Italia: Author. Retrieved from http://www.fao.org/fileadmin/user_upload/national_forest_assessment/images/PDFs/Spanish/KR2_ES__4_.pdf

Milla, F., Emanuelli, P., Sartori, A., Emanuelli, J. (2013). Compendio de funciones alométricas para la estimación de biomasa de especies forestales presentes en Chile: Elemento clave para la Estrategia Nacional de Bosques y Cambio Climático (ENBCC). Chile: Corporación Nacional Forestal. Retrieved from http://cooperacionsuizaenperu.org.pe/images/documentos/cosude/documentos_interes/compendio-funciones-alometrica_ucc.pdf

Ministerio del Medio Ambiente (MMA). (2011). Las áreas protegidas de Chile. Antecedentes, institucionalidad, estadísticas y desafíos. Retrieved from http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/6990/HUM2-0008.pdf?sequence=1&isAllowed=y

Moran, J. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1-2), 17‒23. doi: https://doi.org/10.2307/2332142

Moreno, N., Herrera, M., & Ferreira, R. (2011). Modelo para calculo estimación del carbono en tipo forestal Roble-Raulí-Coigüe en la Reserva Nacional Malleco: Chile. Revista Árvore, 35(6), 1299‒1306. doi: https://doi.org/10.1590/S0100-67622011000700016

Moscovich, F., & Brena, D. (2006). Comprobación de cinco métodos de muestreo forestal en un bosque nativo de Araucaria angustifolia Bert. O. Ktze. Quebracho-Revista de Ciencias Forestales, 13, 7‒16. Retrieved from https://www.redalyc.org/articulo.oa?id=48101301

Nahuelhual, L., Carmona, A., Lara, A., Echeverría, C., & González, M. (2012). Land-cover change to forest plantations: Proximate causes and implications for the landscape in south-central Chile. Landscape and Urban Planning, 107(1), 12‒20. doi: https://doi.org/10.1016/j.landurbplan.2012.04.006

Ord, J., & Getis, A. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189‒206. doi: https://doi.org/10.1111/j.1538-4632.1992.tb00261.x

Ord, J., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4), 286‒306. doi: https://doi.org/10.1111/j.1538-4632.1995.tb00912.x

Ordóñez, J., & Masera, O. (2001). Captura de carbono ante el cambio climático. Madera y Bosques, 7(1), 3‒12. Retrieved from https://www.redalyc.org/articulo.oa?id=61770102

Reyes, R. (2005). Leña: una oportunidad para la conservación de los bosques templados del sur de Chile. Bosque Nativo, 37, 16‒23. Retrieved from https://www.researchgate.net/publication/270880544_Lena_una_oportunidad_para_la_conservacion_de_los_Bosques_Templados_del_sur_de_Chile

Rivera, C., & Vallejos, A. (2015). La privatización de la conservación en Chile: repensando la gobernanza ambiental. Bosque (Valdivia), 36(1), 15‒25. doi: https://doi.org/10.4067/S0717-92002015000100003

Sandoval, V., & Vergara, G. (2014). Sistema de monitoreo nacional de biomasa y carbono forestal. Valdivia, Chile: Universidad Austral de Chile.

Smith-Ramírez, C. (2004). The Chilean coastal range: A vanishing center of biodiversity and endemism in South American temperate rainforests. Biodiversity & Conservation, 13(2), 373‒393. doi: https://doi.org/10.1023/ B:BIOC.0000006505.67560.9f

Vergara, G., Sandoval, V., & Herrera, M. (2017). Distribución espacial de las plantaciones forestales al sur de Chile, zona con presencia de una planta de celulosa. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 23(1), 121‒135. doi: https://doi.org/10.5154/r.rchscfa.2015.09.045

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Revista Chapingo Serie Ciencias Forestales y del Ambiente